

Investigation of Coupled States near ²⁰⁸Pb

Carlotta Porzio

5th February 2025, INTC Meeting

Motivation The doubly magic ²⁰⁸Pb region

Shell model reproduces 3- octupole strength.

▶ Van Isacker and Rejmund, Phys. Rev. Res. 4, 2022

Physical Review Letters Collect Referees Press About ACCEPTED PAPER Deformation and collectivity in doubly magic Pb J. Henderson et al. Phys. Rev. Lett. - Accepted 18 December, 2024 Physical Review C Collections Authors Referees Press About Editorial Team RSS ACCEPTED PAPER Microscopic origins of octupole collectivity in doubly magic Pb M. Rejmund and P. Van Isacker Phys. Rev. C - Accepted 13 January, 2025

²¹²Po

²¹¹Bi

²¹⁰Pb

209**TI**

²⁰⁸Hg

Motivation Proton hole-octupole phonon coupling in ²⁰⁷TI

Multiplets of states from coupling of ²⁰⁸Pb 3⁻ × valence particle/hole.

CÉRN

Carlotta Porzio

Van Isacker and Rejmund, Phys. Rev. Res. 4, 2022

5th February 2025

 $\pi d^{-1}_{3/2} \times 3^{-1}$

 $\pi s^{-1}_{1/2} \times 3^{-1}_{1/2}$

Motivation Proton hole-octupole phonon coupling in ²⁰⁷TI

CÉRN Carlotta Porzio

v**j**_{15/2} × 3⁻

(a) $13/2^+$

(b) 21/2⁺

Motivation Proton hole-neutron particle coupling in ²⁰⁸TI

CÉRN

Proposed Experiment

Goal of the experiment:

- Investigate octupole nature of 17/2+ state (πh⁻¹ 11/2 × 3⁻) in ²⁰⁷Tl
- Probe the microscopic character of members of πs⁻¹ _{1/2} × 3⁻ and πd⁻¹ _{3/2} × 3⁻ multiplets in ²⁰⁷Tl
- Search for proton hole-neutron particle coupled states in ²⁰⁸Tl

Proposed Measurement:

- Population of ^{207,208}TI via cluster transfer reaction ⁷Li(²⁰⁶Hg,αxn) technique successfully employed in IS536 and IS595
 ▶ Bottoni *et al.*, PRC 92, 2015
- Lifetime measurement of 17/2⁺ state in ²⁰⁷TI: B(E3; 17/2⁺→11/2⁻) and upper limits on lifetimes of other multiplet member candidates
- Spectroscopic study to identify short-lived states belonging to other multiplets in ²⁰⁷Tl and ²⁰⁸Tl

Experimental Setup Detectors

Miniball array (gamma rays)

CD+PAD Si detectors in telescope mode (light ions identification)

 $20^{\circ} \lesssim \theta_{lab} \lesssim 60^{\circ}$ at 25 mm target distance

Spectrum from IS595 (under analysis) using ⁷Li(¹³²Sn,αxn).

Experimental Setup The Miniball plunger for half-life measurements

- 3 distances (200 µm-2 mm): for half-life measurement expecting T_{1/2}~25 ps from B(E3; 3⁻→0⁺) in ²⁰⁸Pb
- **1 long distance** (~5 mm): for systematic error estimate and identification of short-lived states

referee's question

4 distances

Shift request

• ²⁰⁶Hg beam at 6.1 MeV/u, 4×10^5 ions/s at Miniball

► Tang *et al.*, PRL 124, 2020

▶ Morrison *et al.*, PLB 838, 2023

• Population of states in ²⁰⁷TI with ~8ħ and up to 6 MeV excitation energy

Total σ	σ _{α2n}	²⁰⁷ TI total production rate	CD count rate for α2n channel	Population probability 17/2+ state in ²⁰⁷ Tl	ε _γ (2.5 MeV) with one Miniball ring	2.5 MeV γ rays observed in 1 8-hour shift	2.5 MeV γ rays observed in 5 8-hour shifts
100 mb	80 mb	1 pps	0.3 pps	20%	2%	40	200

referee's question

To ensure clear identification of the two peak components in the γ -ray spectrum. Minimum ~30-40 counts per component required.

Shift request

• ²⁰⁶Hg beam at 6.1 MeV/u, 4×10^5 ions/s at Miniball

Tang *et al.*, PRL 124, 2020
Morrison *et al.*, PLB 838, 2023

Population of states in ²⁰⁷TI with ~8ħ and up to 6 MeV excitation energy

Total σ	σ _{α2n}	²⁰⁷ TI total production rate	CD count rate for α2n channel	Population probability 17/2+ state in ²⁰⁷ Tl	ε _γ (2.5 MeV) with one Miniball ring	2.5 MeV γ rays observed in 1 8-hour shift	2.5 MeV γ rays observed in 5 8-hour shifts
100 mb	80 mb	1 pps	0.3 pps	20%	2%	40	200

 \rightarrow 4 plunger distances \times 5 shifts = **20 shifts**

 \rightarrow 1 shift for beam tuning optimization

Summary

Motivation

- Investigate particle-phonon coupled states in ${}^{207}\text{TI} \rightarrow B(E3)$
- Investigate proton hole-neutron particle coupled states in ²⁰⁸TI → probe shell model description

Proposed experiment

- Cluster transfer reaction ⁷Li(²⁰⁶Hg,αxn) at Miniball
- Lifetime measurement of 17/2⁺ state in ²⁰⁷TI and upper limits for other multiplet member candidates
- Identification of other multiplet members in ^{207,208}TI

 \rightarrow 21 shifts requested

Thank You

C. Porzio¹, S. Leoni², B. Fornal³, S. Bottoni², A. D. Ayangeakaa⁹, G. Benzoni², A. Bracco², F. Browne⁴, M. Ciemala³, N. Cieplicka-Orynńzak³, G. Colò², G. Corbari², D. Duda³, C. Fransen⁵, S. Freeman^{1,4}, L. P. Gaffney⁶, A. Gargano⁷, D. Genna², A. Giaz², A. Gottardo⁸, Ł. Iskra³, R. V. F. Janssens⁹, C.-D. Lakenbrink⁵, M. Luciani², A. Maj³, N. Marginean¹⁰, M. Matejska-Minda³, D. Mengoni¹¹, S. Meyer¹², C. Müller-Gatermann¹³, R. Raabe¹⁴, P. Reiter⁵, P. Spagnoletti⁶, S. Stegemann¹, T. Kröll¹², N. Warr^{5,6}, L. Zago^{2,8}

¹CERN-ISOLDE, Genève, Switzerland ²Università degli Studi di Milano and INFN Milano, Milano, Italy ³Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland ⁴University of Manchester, Manchester, UK ⁵Universitä zu Köln, Köln, Germany ⁶University of Liverpool, Liverpool, UK ⁷INFN Napoli, Napoli, Italy ⁸INFN Legnaro, Legnaro, Italy ⁸INFN Legnaro, Legnaro, Italy ⁹University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA and Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina, USA ¹⁰IFIN-HH, Magurele, Romania ¹¹Università degli Studi di Padova and INFN Padova, Padova, Italy ¹²TU Darmstadt, Darmstadt, Germany ¹³Argonne National Laboratory, Lemont, USA ¹⁴KU Leuven, Belgium

home.cern

Backup Slides

