Study of semiconductor detectors' performance at NEAR

 <u>M. Diakaki¹</u>, <u>M. Bacak²</u>, C. Weiss^{2,3}, E. Griesmayer^{2,3}, K. Kaperoni¹, M. Kokkoris¹,
 J. Bartolomé⁴, Z. Eleme⁵, V. Foteinou⁵, C. Guerrero⁴, D. Hainz², E. Jericha²,
 S. Kopanos¹, I. Kopsalis¹, V. Michalopoulou¹, N. Patronis⁵, A. Reina⁴, R. Vlastou¹ and the n TOF Collaboration⁶

¹National Technical University of Athens, Greece

²TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria

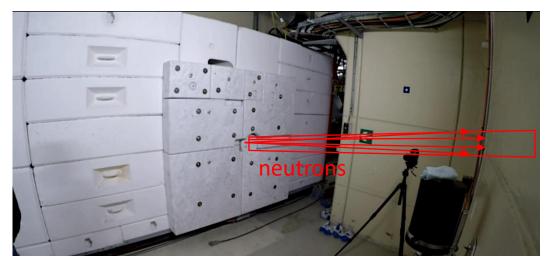
³www.cividec.at

⁴Universidad de Sevilla, Spain

⁵University of Ioannina, Greece

⁶www.cern.ch/n_TOF

The n_TOF NEAR station


- Very close to the Pb spallation target (~2m flight path)
- Commissioned in 2021

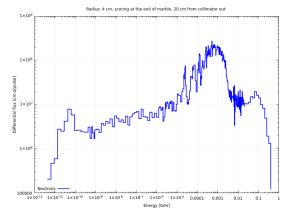
EAR1

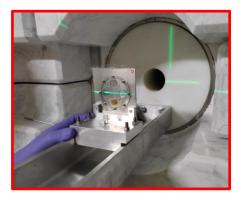
 \mathbf{O}

• **n_TOF mixed field irradiation station [4]** for various applications:

Photos from A.P. Bernardes presentation, n_TOF meeting 25/11/2021

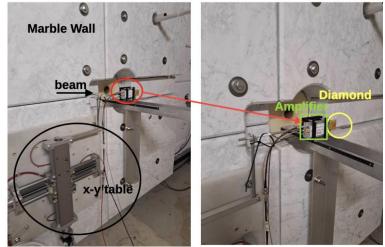
Possible applications [1-3]:


- Nuclear Astrophysics
- Nuclear energy production studies
- Radiation damage studies (conditions close to accelerator facilities)


[1] M. Cecchetto et al., IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 8, AUGUST 2023
[2] A. Mengoni et al., CERN-INTC-2020-073; INTC-I-222 (2020)

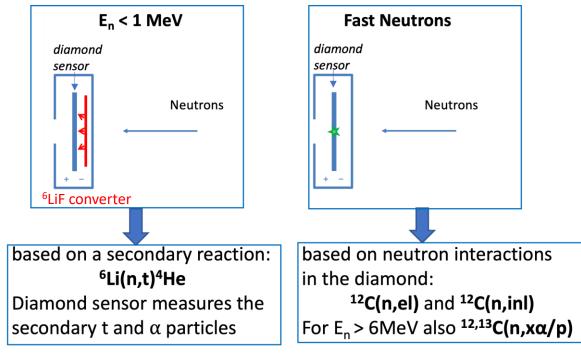
[2] A. Mengoni et al., CERN-INTC-2020-073; INTC-1-222 (2020)
[3] E. Stamati, et al., CERN-INTC-2022-008; INTC-P-623 (2022)
[4] M. Ferrari et al., Phys. Rev. Accel. Beams 25, 103001 (2022)

Commissioning of the NEAR station


- 1) Extensive Monte Carlo Simulations [1,4,5]
- 2) Multiple Foil Activation Analysis (MAM1 and MAM2 configurations) [5]
- 3) Moderation-Absorption technique (ANTILOPE) [5]

4) Active diamond detector measurement of fluence and profile [6,7,8]

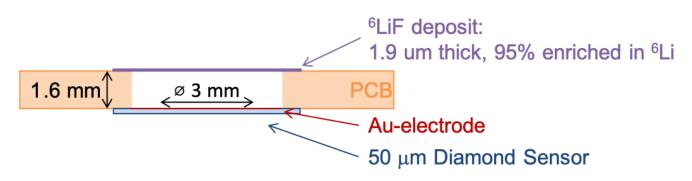
[1] M. Cecchetto et al., IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 8, AUGUST 2023
[4] M. Ferrari et al., Phys. Rev. Accel. Beams 25, 103001 (2022)
[5[E. Stamati et al., EPJ Web of Conferences 284, 06009 (2023)
[6] M. Diakaki et al., CERN-INTC-2022-022 / INTC-P-631 (2022)
[7] K. Kaperoni et al., RAP CONFERENCE PROCEEDINGS, VOL. 8, PP. 79–83, 2023
[8] K. Kaperoni et al., Presentations at n_TOF Collaboration meetings

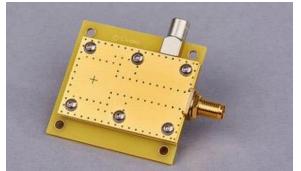

- Diamond sensor + electronics especially developed by CIVIDEC Instrumentation [9] for the measurements at NEAR:
- > Fast-response, high-radiation-hardness, high-resolution, low-noise radiation detector
- Single-crystal sensor fabricated via the CVD (Chemical Vapour Deposition) technology.
- **Characteristics**: 50 μm thickness, 4x4 mm² active surface (*Thin detector to cope with harsh NEAR conditions* [10])

[9] CIVIDEC Instrumentation, <u>https://cividec.at/</u>
 [10] M. Angelone and C. Verona, J. Nucl. Eng. 2021, 2, 422–470

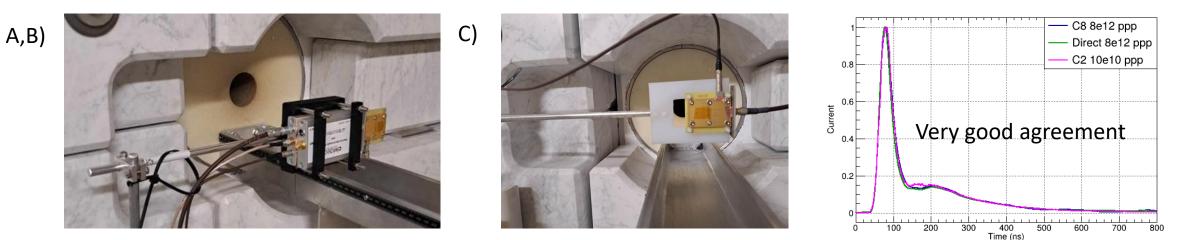
- Diamond sensor + electronics especially developed by CIVIDEC Instrumentation [9] for the measurements at NEAR:
- > Fast-response, high-radiation-hardness, high-resolution, low-noise radiation detector
- Single-crystal sensor fabricated via the CVD (Chemical Vapour Deposition) technology.
- **Characteristics**: 50 μm thickness, 4x4 mm² active surface (*Thin detector to cope with harsh NEAR conditions* [10])

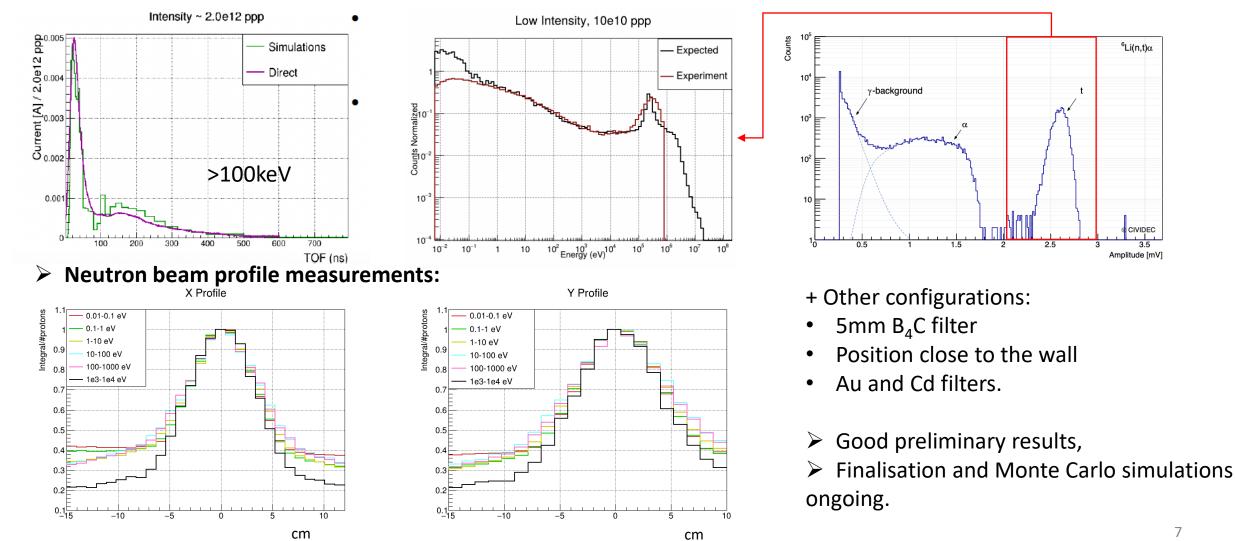
• Neutron Detection Principle:


This principle already used in fission reactors and fusion tokamaks [10]


Nuclear reaction	$E_{\mathbf{th}}$ [MeV]	Q [MeV]
$^{12}{ m C}({ m n,el})^{12}{ m C}$	0.0	0.0
$^{12}\mathrm{C}(\mathrm{n},lpha)^{9}\mathrm{Be}$	6.2	-5.7
$^{12}\mathrm{C}(\mathrm{n,}3lpha)$	7.9	-7.3
$^{12}{ m C(n,p)^{12}B}$	13.6	-12.6
$^{12}C(n,d)^{11}B$	14.9	-13.7
$^{13}\mathrm{C}(\mathrm{n},lpha)^{10}\mathrm{Be}$	4.1	-3.8

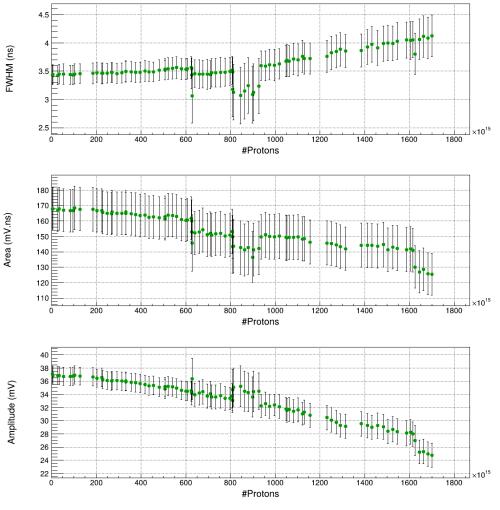
[9] CIVIDEC Instrumentation, <u>https://cividec.at/</u>[10] M. Angelone and C. Verona, J. Nucl. Eng. 2021, 2, 422–470


Schematics of detector setup:



- Electronic / Readout setups used:
- A) 10 MHz DC-coupled amplifier ("C8") : Low gain, no saturation at g-flash: high neutron energies
- B) 2 GHz AC-coupled 40 dB amplifier ("C2") : High gain, very fast AC readout (pulse height mode) no saturation for 10e10 ppp
- C) No preamplification stage ("Direct") : 70 m cable betweeen detector and DAQ.

- Different configurations and measurements:
- Neutron flux measurements: \geq



⁶Li(n,t)α

CIVIDEC

Amplitude [mV]

• Interesting degradation of detector's performances (C2):

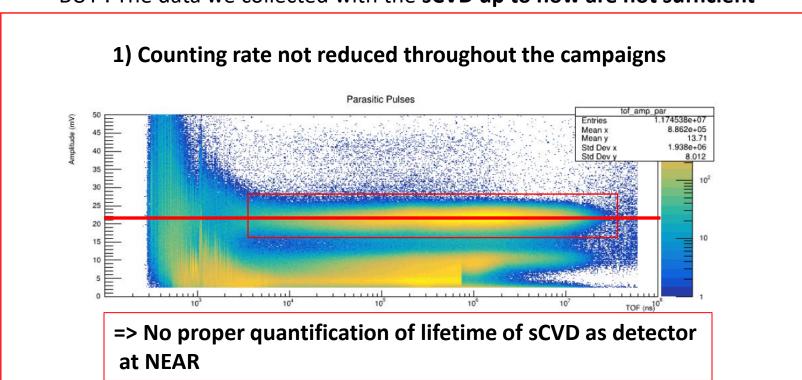
Campaign: August 2023

Deterioration of signal characteristics:

- Broadening of FWHM,
- Lowering of area
- Lowering of Amplitude

Typically due to radiation damage:

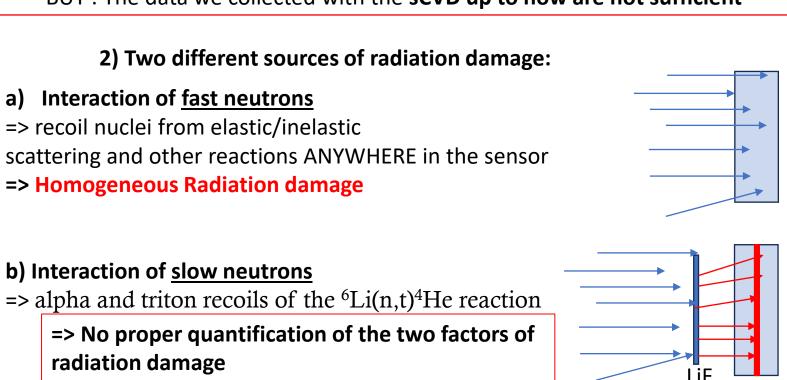
Defects of various types in the lattice, due to energetic recoil nuclei/ from nuclear collisions and reactions (vacancies and displaced atoms in interstitial sites, trapping detrapping process, polarization effects [10]....)


All these effects have been / are currently being extensively studied for neutron irradiation on CVD diamonds due to their usage for neutron detection at various fields [10-11]

Interesting to study **radiation hardness of our thin sCVD detector** at the NEAR neutron field.

- Lifetime of diamond as neutron monitor at NEAR.
- General results on radiation damage of 50 μm sCVD in white neutron beam from spallation source. Interesting for various applications using diamond detectors as neutron monitors – fission / fusion reactors, accelerator environments, atmospheric environments etc) (complete ongoing PhD work).

Interesting to study radiation hardness of our thin sCVD detector at the NEAR neutron field.


- Lifetime of diamond as neutron monitor at NEAR.
- General results on radiation damage of 50 μm sCVD in white neutron beam from spallation source. Interesting for various applications using diamond detectors as neutron monitors – fission / fusion reactors, accelerator environments, atmospheric environments etc) (complete ongoing PhD work).

BUT : The data we collected with the sCVD up to now are not sufficient

Interesting to study radiation hardness of our thin sCVD detector at the NEAR neutron field.

- Lifetime of diamond as neutron monitor at NEAR.
- General results on radiation damage of 50 μm sCVD in white neutron beam from spallation source. Interesting for various applications using diamond detectors as neutron monitors – fission / fusion reactors, accelerator environments, atmospheric environments etc) (complete ongoing PhD work).

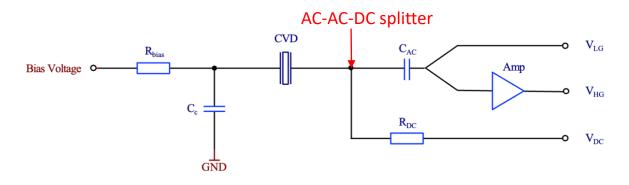
BUT : The data we collected with the sCVD up to now are not sufficient

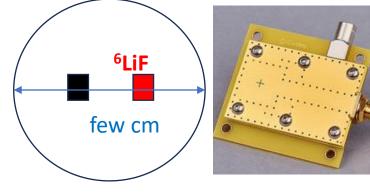
Interesting to study radiation hardness of our thin sCVD detector at the NEAR neutron field.

- Lifetime of diamond as neutron monitor at NEAR.
- General results on radiation damage of 50 μm sCVD in white neutron beam from spallation source. Interesting for various applications using diamond detectors as neutron monitors – fission / fusion reactors, accelerator environments, atmospheric environments etc) (complete ongoing PhD work).

BUT : The data we collected with the **sCVD up to now are not sufficient**

3) Data from different campaigns, with different characteristics


- a) the setup slightly changed each time,
- b) the neutron beam profile at NEAR was measured
- c) the detector was used at other measurements (EAR1, EAR2)


=> conversion from protons on n_TOF target to neutrons on detector is not straightforward

=> not possible to combine all campaigns in one consistent study of radiation damage effects with respect to neutron dose

New experimental setup & proton request

- Propose to measure with two 50 μm thick new diamond sensors <u>IN PARALLEL</u>, one with and one without ⁶LiF converter (=> disentangle the two sources of radiation damage)
- Same neutron irradiation conditions (few cm flat top profile)
- For each detector the following electronics setup proposed:

=> Three readouts in parallel in order to combine **maximum possible information in-beam**:

- V_{LG}: AC output without amplification (high neutron energy region)
- V_{HG}: AC output with amplification (low neutron energy region signals from the ⁶Li(n,t) reaction)
- V_{DC} : DC measurement of the **dark current** of the sensor

First time such a combined readout scheme implemented for monitoring of Radiation Damage vs Neutron Dose .

New experimental setup & proton request

After the end of the irradiation campaign, **Electron Paramagnetic Resonance (EPR) spectroscopy** measurements will be performed at the NSCR "Demokritos", Greece [12,13] for an offline study of the structure defects.

BEAM TIME ESTIMATION (sCVD): continuous campaign with 6×10^{18} protons estimated to be sufficient to reach the point where the tritons' pulse height ~ background.

[12] M. Kokkoris et al., Nucl. Inst. and Methods in Phys. Res. B 195 (2002) 414–421

[13] G. Mitrikas, M. Kokkoris et al., Eur. Phys. J. AP 21, 163–170 (2003)

New experimental setup & proton request

After the end of the irradiation campaign, **Electron Paramagnetic Resonance (EPR) spectroscopy** measurements will be performed at the NSCR "Demokritos", Greece [12,13] for an offline study of the structure defects.

BEAM TIME ESTIMATION (sCVD): continuous campaign with 6×10^{18} protons estimated to be sufficient to reach the point where the tritons' pulse height ~ background.

EXTENSION OF THE PROPOSED RADIATION DAMAGE STUDY TO SIC:

Interesting to study **radiation hardness of SiC sensor** of the same thickness under the same conditions [14,15], which is also a very important material used in electronics and is interesting for future applications (mainly accelerator environments – high energy physics at CERN) => **Replicate the proposed setup for sCVD and run at a different campaign**

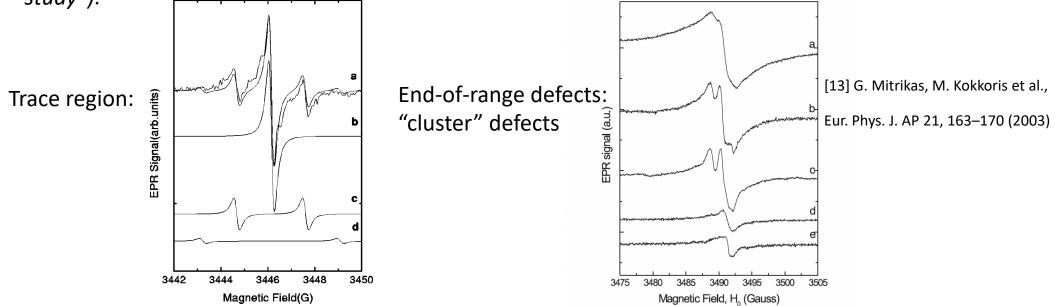
BEAM TIME ESTIMATION (SiC): continuous campaign with 6 × 10¹⁸ protons estimated to be sufficient.

[12] M. Kokkoris et al., Nucl. Inst. and Methods in Phys. Res. B 195 (2002) 414–421 [14] T. Gaggl et al., Nucl. Inst. and Methods in Phys. Res. A 1040 (2022) 167218

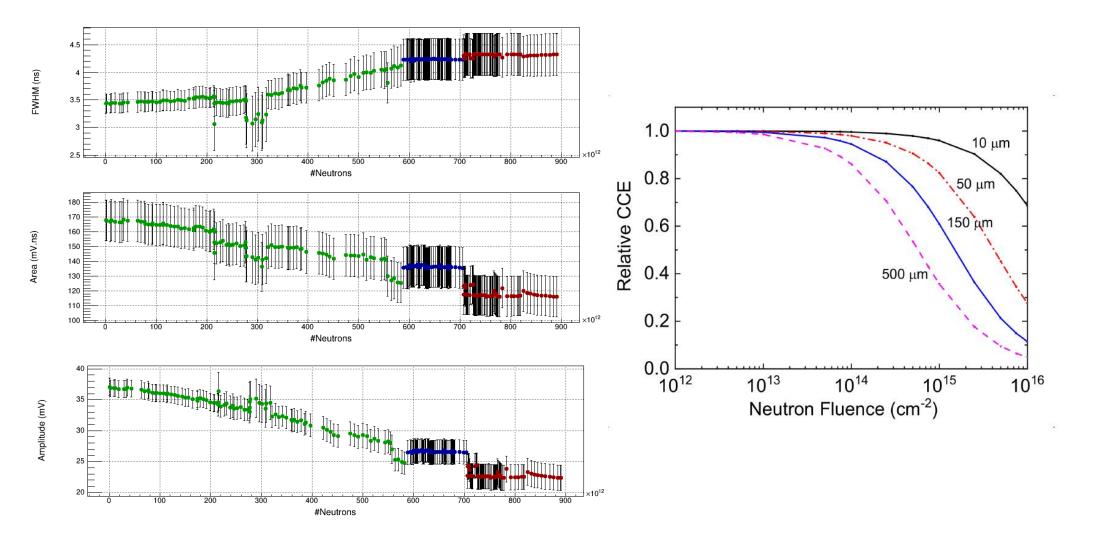
Conclusion

- ➤We propose a systematic study of
- a) The lifetime of a **50 \mum sCVD diamond sensor** as neutron monitor at NEAR.
- b) The two different components of the radiation damage (fast neutrons=> homogeneous , slow neutrons => "layer")
- c) Record the **detector performance vs increasing radiation** with three different readouts => combine the maximum information possible.
- d) Offline study of the crystal defects with **Electron Paramagnetic Resonance (EPR) spectroscopy**
- The same study is proposed for a 50 μm thick SiC sensor in order to compare the two materials' performance in the harsh environment of NEAR.

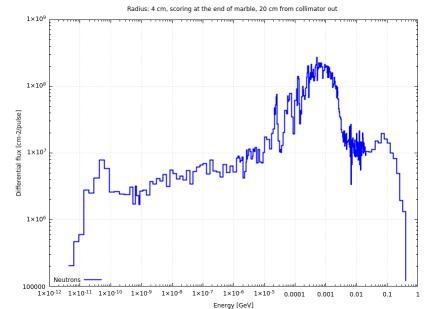
S=> SCVD: 6 × 10¹⁸ protons SiC: 6 × 10¹⁸ protons

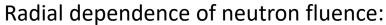

Proton request:

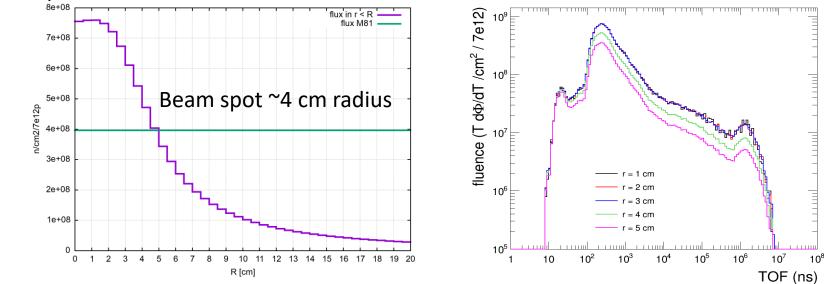
<u>Total</u>: 1.2×10^{19} protons requested in two campaigns

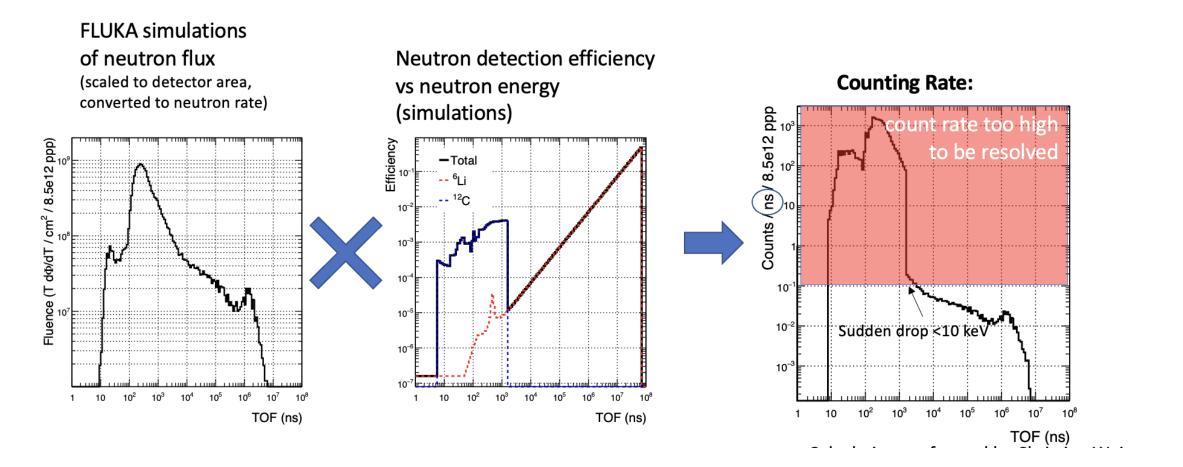

Extra slides

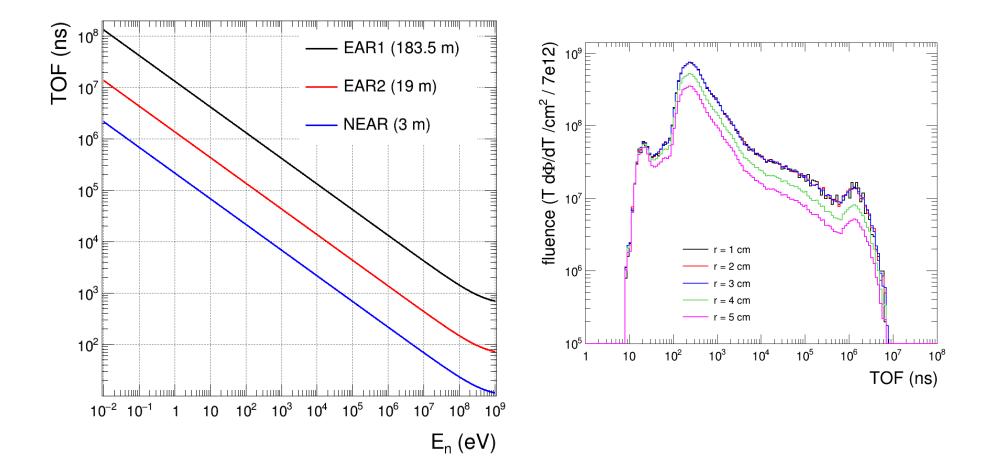
EPR

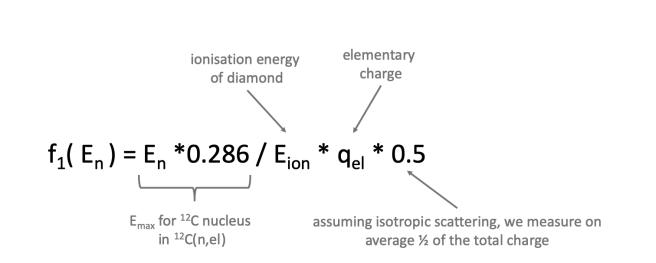

- An EPR spectrum is usually directly measured as the first derivative of the absorption resonance of microwave radiation. The microwave is kept at a fixed frequency and the magnetic field is swept. For a specific microwave frequency (with energy hv), a resonance occurs at a magnetic field of B=hv/g_eμ_B, for free electrons. When the electron is not free B=hv/gμ_B, where g different to g_e, which means that the electron has gained or lost angular momentum through spin–orbit coupling, and the value of g that occurs from the EPR measurement (since hv is known, μ_B is known and B is estimated as the position of the resonance (i.e. the value of B where the derivative is 0) gives information about the nature of the atomic or molecular orbital (in our case from defects) containing the unpaired electron.
- Example of EPR measurement of different defects created from the irradiation of 12 MeV protons ins 300 um SiC wafers (taken from *H. J. von Bardeleben et al., PHYSICAL REVIEW B, VOLUME 62, NUMBER 15 (2000): "Proton-implantation-induced defects in n-type 6H- and 4H-SiC: An electron paramagnetic resonance study"):*




18

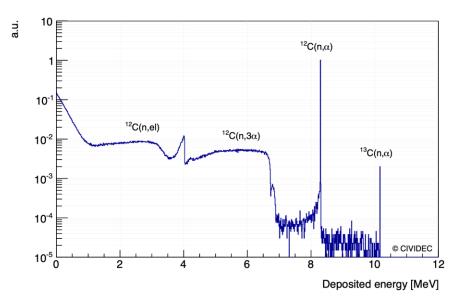
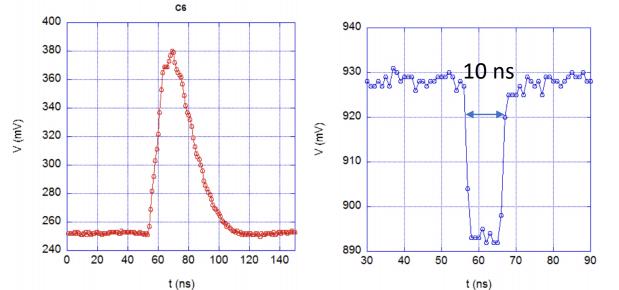
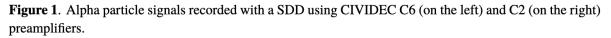



NEUTRON FLUENCE CHARACTERISATION at NEAR (simulations)



Conversion yield

Energy Interval	ε (ENDF/B-VIII.0)	Q _μ [fC]
E _n < 10 keV	⁶ Li(n,a)t	Q-value/2/ $E_{ion}^*q_{el}$ = 29.4 fC
10 keV < E _n < 1 MeV	⁶ Li(n,a)t ¹² C(n,tot)	Q-value/2/ $E_{ion}^{*}q_{el}^{}$ = 29.4 fC f ₁ ($E_{n}^{}$), see below
E _n > 1 MeV	¹² C(n,tot)	f ₂ (E _n), Geant4 Ρ. Kavrigin

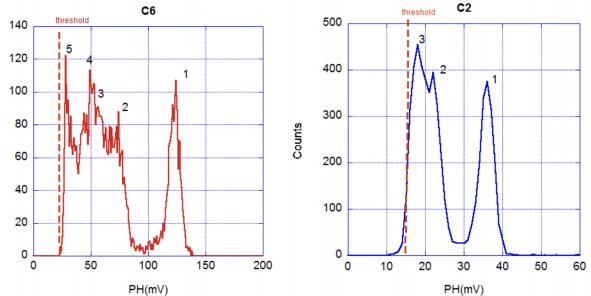
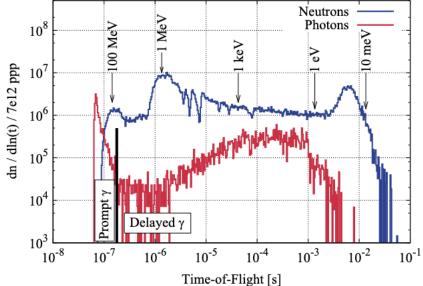

Figure 3.23: Deposited energy spectrum of 14 MeV neutrons in 500 μ m diamond.

 Table 1. Diamond parameters ¹.

Parameter	Value	
Atomic Number	6	
E_g at 300 K (eV)	5.470	
Density (g·cm ⁻³)	3.515	
ε_p (eV)	13	
Fusion temperature (°C)	4100	
Electron mobility $(cm^2V^{-1}s^{-1})$ at 300 K	1800–2200	
Hole mobility ($cm^2V^{-1}s^{-1}$) at 300 K	1200–1600	
Breakdown voltage (Vcm ⁻¹)	>10 ⁷	
Thermal conductivity σ_T (Wcm ⁻¹ K ⁻¹)	20	
Saturation velocity v_{sat} (cm s ⁻¹)	$2.7 imes10^7$	
Resistivity ρ (ohm cm)	>10 ¹³	
Intrinsic carrier density at 300 K (cm $^{-3}$)	<10 ³	
Dielectric constant	5.7	
Energy to displace an atom (eV) 1	37.5–47.6	



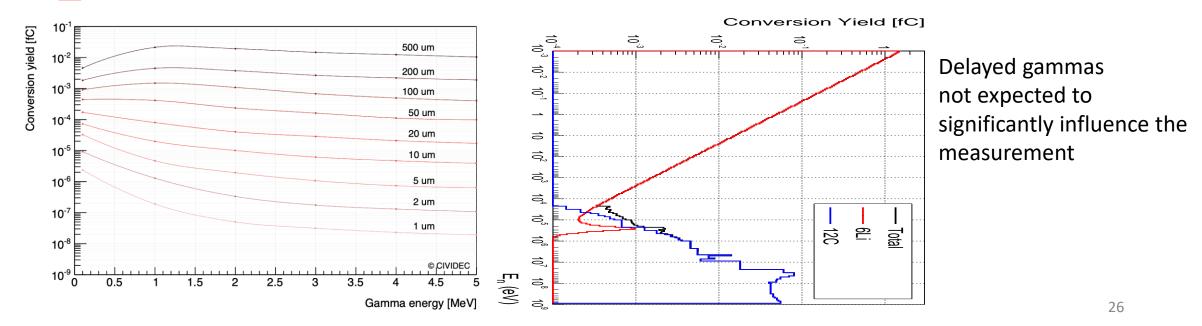
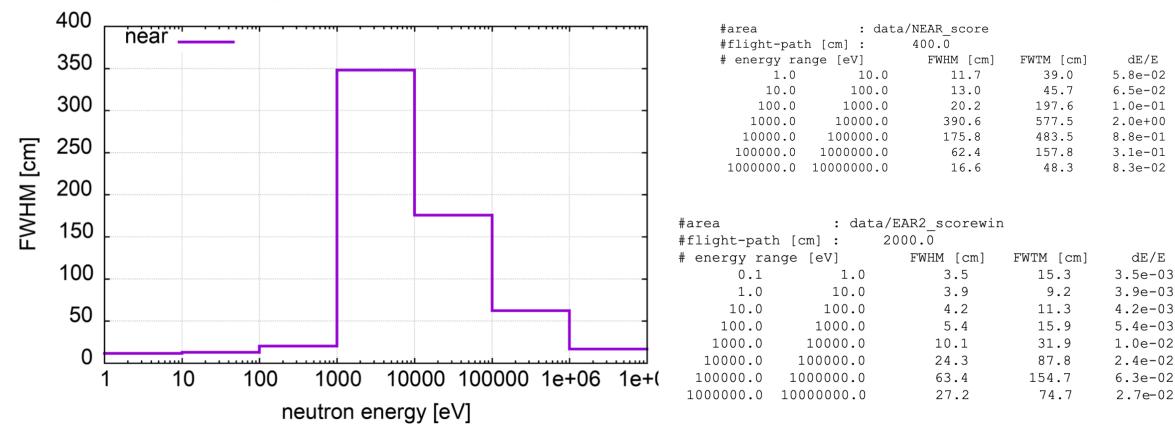

From Cazzaniga et al., 2016 JINST 11 P07012

Figure 2. Pulse Height Spectra of an alpha source of Ra-226 recorded with a SDD using CIVIDEC C6 (on the left) and C2 (on the right) preamplifiers. Numbers from 1 to 5 tag the peaks as in table 1. A dashed vertical line indicates the acquisition threshold.

Gamma background, grossier estimation from EAR2 simulations



In Figure 5.17 the conversion yield of the γ interaction in diamond is shown.

Resolution for TOF measurements at NEAR

NEAR

NEAR @ 4 m from the collimator hole

From the presentation of A. Mengoni, n_TOF collaboration meeting, 30-31 May 2022

 $\mathbf{\Lambda}$