# Measurement of the <sup>238</sup>Pu(n,γ) cross-section at EAR2

V. Alcayne<sup>1</sup>, D. Cano-Ott<sup>1</sup>, E. González-Romero<sup>1</sup>, T. Martínez<sup>1</sup>, E. Mendoza<sup>1</sup>, G. Noguère<sup>2</sup>, A. Perez de Rada<sup>1</sup>, A. Sánchez-Caballero<sup>1</sup>, A. B. Allannavar<sup>3</sup>, V. Babiano<sup>4</sup>, J. Balibrea-Correa<sup>4</sup>, B. Bernardino Gameiro<sup>4</sup>, F. Calviño<sup>3</sup>, A. Casanovas<sup>3</sup>, G. Cortés<sup>3</sup>, G. de la Fuente Rosales<sup>4</sup>, M. Diakaki<sup>5</sup>, C. Domingo-Pardo<sup>4</sup>, C. Guerrero<sup>6</sup>, M. Kokkoris<sup>5</sup>, J. Lerendegui-Marco<sup>4</sup> and the n\_TOF Collaboration.

<sup>1</sup> Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain

<sup>2</sup> CEA DES, Service de Physique des Réacteurs et du Cycle, Cadarache, France

- <sup>3</sup> Universitat Politècnica de Catalunya, Spain
- <sup>4</sup> Instituto de Fisica Corpuscular, CSIC Universidad de Valencia, Spain
- 5 National Technical University of Athens, Greece
- 6 Universidad de Sevilla, Spain



- Introduction and motivation
- Previous measurements and evaluations of <sup>238</sup>Pu
- Measurement at n\_TOF EAR2
- Beam time request























mainly

beta-

decay

mainly

alpha

decay







![](_page_5_Picture_2.jpeg)

![](_page_6_Figure_1.jpeg)

![](_page_6_Picture_2.jpeg)

![](_page_7_Figure_1.jpeg)

y Tecnológicas

• **Importance:** transport, transmutation, and storage of spent fuel.

242Cm

![](_page_8_Figure_2.jpeg)

![](_page_8_Figure_3.jpeg)

![](_page_8_Picture_4.jpeg)

- **Importance:** transport, transmutation, and storage of spent fuel.
- Isotopes with half-lives **longer than 1e3 year** are mainly important in the long term disposal.

![](_page_9_Picture_3.jpeg)

![](_page_9_Figure_4.jpeg)

![](_page_9_Picture_5.jpeg)

- **Importance:** transport, transmutation, and storage of spent fuel.
- Isotopes with half-lives **longer than 1e3 year** are mainly important in the long term disposal.
- Isotopes with half-lives shorter than 1 year decay in the pool.

![](_page_10_Picture_4.jpeg)

![](_page_10_Figure_5.jpeg)

![](_page_10_Picture_6.jpeg)

## **Decay heat in nuclear reactors**

- Importance: Key for transport, transmutation, and storage of spent fuel.
- Main contributors to decay heat:
  - 0–50 years: Fission products dominate.
  - >50 years: Actinides, including <sup>238</sup>Pu, become significant.
- <sup>238</sup>Pu impact:
  - ~10% of decay heat after 10 years of cooling.
  - Main  $\alpha$ -emitter between 10 and 10<sup>3</sup> years after shutdown.
  - For BWR: After 15.6 years, <sup>238</sup>Pu content uncertainty leads to ~0.4% decay heat uncertainty [7].
- **Research focus:** Propagation of nuclear data uncertainties in decay heat estimation [7, 8, 9].

![](_page_11_Figure_10.jpeg)

## <sup>238</sup>Pu for space exploration

- Missions beyond Jupiter require Radioisotope Thermoelectric Generators (RTGs) for electrical power.
- Plutonium-238 (<sup>238</sup>Pu) is the ideal isotope:
  - Alpha-emitter with 87.7 years half-life.
  - Provides sufficient decay heat and low radiation background.
- Example: Curiosity and Perseverance rovers used **4.83 kg of plutonium oxide**.

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

Figure 1. Ceramic fuel pellet before encapsulation

![](_page_12_Picture_9.jpeg)

![](_page_12_Picture_10.jpeg)

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

![](_page_12_Picture_12.jpeg)

UIN

Images obtained from https://inl.gov/mars-2020/

- **Post-Cold war:** Majority of <sup>238</sup>Pu produced in Russia.
- **U.S.** production restarted:
  - Idaho & Oak Ridge National Labs.
  - Current rate: ~400 g/year; Goal: 1.5 kg/year [2][3].
- **European efforts:**

DE CIENCIA, INNOVACIÓN

Y UNIVERSIDADES

- ESA studies at BR2 reactor (SCK-CEN) [4].
- Proven feasibility to reduce reliance on non-European partners [5].

![](_page_13_Figure_8.jpeg)

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

ESA Contract No. 4000135477/21/NL/GLC/mv

## **Executive Summary Report (ESR)** Pu-238 Production Feasibility Study

#### 20 June 2022

|              | AREVA<br>(EC 2 | STUDY<br>2010) | ORANO - SCK CEN - TRACTEBEL<br>(EC 2022) |  |
|--------------|----------------|----------------|------------------------------------------|--|
|              | Am241          | Pu238          | Pu238                                    |  |
| CAPEX (M€)   | 120            | 400            | 160                                      |  |
| OPEX (M€/yr) | 12             | 25             | 9-17                                     |  |
| k€/Watt      | 100-150        | 100-150        | 93-145                                   |  |

EC : Economic Conditions

#### Preferred neutron energy range:

Resonance absorption region of <sup>237</sup>Np (1–600 eV) [6].

#### **Undesirable reaction:**

Neutron capture by  $^{238}$ Pu  $\rightarrow$  Produces  $^{239}$ Pu (fertile, unsafe for reactors) [1].

### Key Focus:

Deeper understanding of the Resolved Resonance Region (RRR) for efficient <sup>238</sup>Pu production.

Incident neutron data /

![](_page_14_Figure_7.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

### **PROFIL & PROFIL-2 experiments:**

- Conducted in the **Phénix fast reactor** [11].
- Irradiated nearly pure isotope samples for precise capture crosssections and branching ratios [10].
- Findings for <sup>238</sup>Pu:
  - JEFF-3.1 library overestimates capture cross-section by ~2.5% [12]. The recent evaluations of this isotope has not change considerably.
  - Lack of significant updates due to limited new experimental data.

#### TABLE IV

C/E Ratios for the Samples Involving the Major Actinides of the Uranium Cycle, After Fluence Scaling

| Nuclide           | Reaction          | Ratio                                                                      | C/E                                                                                                        |
|-------------------|-------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| <sup>235</sup> U  | Fission           | <sup>235</sup> U/ <sup>238</sup> U                                         | 1: $1.007 \pm 0.020$<br>2A: $1.000 \pm 0.002^{a}$<br>2B: $0.993 \pm 0.003$                                 |
|                   | Capture           | <sup>236</sup> U/ <sup>235</sup> U                                         | $\begin{array}{c} 1:\ 1.000 \pm 0.001^{a} \\ 2A:\ 1.000 \pm 0.001 \\ 2B:\ 1.000 \pm 0.001^{a} \end{array}$ |
| <sup>238</sup> U  | Capture $(n, 2n)$ | <sup>239</sup> Pu/ <sup>238</sup> U<br><sup>237</sup> Np/ <sup>238</sup> U | $\begin{array}{c} 1.018 \pm 0.002 \\ 0.927 \pm 0.028 \end{array}$                                          |
| <sup>238</sup> Pu | Capture           | <sup>239</sup> Pu/ <sup>238</sup> Pu                                       | $1.024 \pm 0.005$                                                                                          |

The small overestimation of the  $^{238}$ Pu capture rate (~2.5% according to the PROFIL analysis) does not seem confirmed by the EXFOR trends (see Fig. 2). However, the differential data measurements are rather old and dispersed.

![](_page_16_Picture_11.jpeg)

## **PROFIL & PROFIL-2 experiments:**

- Conducted in the **Phénix fast reactor** [11].
- Irradiated nearly pure isotope samples for precise capture crosssections and branching ratios [10].
- Findings for <sup>238</sup>Pu:
  - JEFF-3.1 library overestimates capture cross-section by ~2.5% [12]. The recent evaluations of this isotope has not change considerably.
  - Lack of significant updates due to limited new experimental data.

#### TABLE IV

C/E Ratios for the Samples Involving the Major Actinides of the Uranium Cycle, After Fluence Scaling

| Nuclide           | Reaction          | Ratio                                                                      | C/E                                                                                                  |
|-------------------|-------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| <sup>235</sup> U  | Fission           | <sup>235</sup> U/ <sup>238</sup> U                                         | $\begin{array}{c} 1:\ 1.007 \pm 0.020 \\ 2A:\ 1.000 \pm 0.002^a \\ 2B:\ 0.993 \pm 0.003 \end{array}$ |
|                   | Capture           | <sup>236</sup> U/ <sup>235</sup> U                                         | 1: $1.000 \pm 0.001^{a}$<br>2A: $1.000 \pm 0.001^{a}$<br>2B: $1.000 \pm 0.001^{a}$                   |
| <sup>238</sup> U  | Capture $(n, 2n)$ | <sup>239</sup> Pu/ <sup>238</sup> U<br><sup>237</sup> Np/ <sup>238</sup> U | $\begin{array}{c} 1.018 \pm 0.002 \\ 0.927 \pm 0.028 \end{array}$                                    |
| <sup>238</sup> Pu | Capture           | <sup>239</sup> Pu/ <sup>238</sup> Pu                                       | $1.024 \pm 0.005$                                                                                    |

| GOBIERNO<br>DE ESPAÑA | MINISTERIO<br>DE CIENCIA, INNOVACIÓN<br>Y UNIVERSIDADES | Cierro de Investigaciones<br>Energéticas, Medicambientales<br>y Tecnológicas | UIN |  |
|-----------------------|---------------------------------------------------------|------------------------------------------------------------------------------|-----|--|
|                       |                                                         | y recitorogicus                                                              | í I |  |

The small overestimation of the  $^{238}$ Pu capture rate ( $\sim 2.5\%$  according to the PROFIL analysis) does not seem confirmed by the EXFOR trends (see Fig. 2). However, the differential data measurements are rather old and dispersed.

#### MYRRHA overview:

- Lead-bismuth-cooled fast spectrum reactor [13].
- Uses MOX fuel with 30% plutonium.
- Relies on accurate nuclear data for criticality and safety assessments.
- Role of <sup>238</sup>Pu:
  - Influences neutron economy via capture  $(n,\gamma)$  and fission (n,f) reactions.
  - Current data libraries show discrepancies [14].
- Impact:
  - Affects multiplication factor (k<sub>eff</sub>) calculations.
  - Urgent need for updated evaluations and new experimental measurements to enhance simulation reliability.

![](_page_18_Figure_11.jpeg)

![](_page_18_Picture_12.jpeg)

![](_page_18_Figure_13.jpeg)

Exchangers

![](_page_18_Figure_14.jpeg)

. MYRRHA model for the critical configuration, imted in KENO-VI (SCALE6.1).

## **Overview of <sup>238</sup>Pu neutron reaction measurements**

#### • Limited data availability:

- Few measurements exist for <sup>238</sup>Pu neutron reactions.
- Fission reaction:
  - Most studied channel, but additional data is needed there is an entry in HPRL [15–19].
- Capture cross-Section:
  - Thermal point, there are two old measurements [20, 21] and a more recent one performed at the ILL in 2009 [22].
  - Sparse data: Only **two capture measurements** and **one transmission measurement** available.

![](_page_19_Figure_8.jpeg)

- 1967 (Young et al.) :
  - Transmission measurement from thermal to 200 eV.
  - **Difficulties:** The data are not in EXFOR and there were considerable issues with contaminants in the sample such as actinides and water.
- 1973 (Silbert & Berreth):
  - Capture measurement from 20 to 490 eV with a nuclear explosion, therefore is a single shot experiment.
  - Difficulties: Use of a single nuclear explosion unique challenges and high uncertainties in radiative kernels. Also, Differentiating capture γrays from other background signals was complex due to the intense neutron flux and multi-detector arrangement.
- 2013 (Chyzh et al.):
  - Capture measurement from thermal to 400 eV with DANCE at Los Alamos
  - **Difficulties:** The extreme radioactivity of <sup>238</sup>Pu introduced significant background noise, complicating the isolation of neutron-capture events.

![](_page_20_Picture_10.jpeg)

## **Overview of <sup>238</sup>Pu neutron reaction measurements**

- Significant discrepancies between measurements (e.g., radiative kernels differ by 10–20%).
- Compatibility issues for higher resonance areas due to large uncertainties in earlier experiments.
- Therefore a new measurement is needed with a high instantaneous flux to reduce background and improve precision.

![](_page_21_Figure_4.jpeg)

- Recent libraries: JEFF-3.3, JENDL-4, JENDL-5, ENDF-VIII.
  - Based on Maslov's 1997 evaluation, combining data from Silbert and Young [31].
- JENDL-5 updates:
  - Negative resonances adjusted to match new thermal values from Chyzh and Letourneau [29].
  - Thermal capture cross-section increased by 30%.
  - RRR Parameters: Remain unchanged.

![](_page_22_Figure_7.jpeg)

# <sup>238</sup>Pu n\_TOF proposal

We propose to perform a capture cross section at n\_TOF EAR2 to measure from 2 to 500 eV.

- Sample:
  - ~2 mg pellets provided by CEA Cadarache, in a stainless steel container.
  - Necessary enrichment for the measurement.
- Experimental area:
  - Location: n\_TOF EAR2.
  - Energy range: 2-500 eV.
  - Experimental conditions: Strong instantaneous neutron flux required due to the short half-life ( $T_{1/2} = 87.7$  years) and high  $\alpha$ -particle emission.
- Detectors:
  - Method: sTED with Pulse Height Weighting Technique (PHWT).
  - Sensitivity tailored to the experimental conditions and sample type.

![](_page_23_Picture_13.jpeg)

![](_page_23_Picture_14.jpeg)

![](_page_23_Picture_15.jpeg)

![](_page_23_Figure_16.jpeg)

![](_page_23_Picture_17.jpeg)

#### • Sample details:

- Four cylindrical <sup>238</sup>Pu samples, 4 mm height, 3.75 mm diameter.
- Produced in the PROFIL and PROFIL2 experiments [10].
- Irradiation:
  - Irradiated in the Phenix reactor [11].
  - Contain ~2 mg of <sup>238</sup>Pu with ~70% enrichment.
- Additional isotopes:

iemat

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

- Includes <sup>239</sup>Pu, <sup>240</sup>Pu, <sup>241</sup>Pu, <sup>242</sup>Pu, <sup>234</sup>U (~10%), and <sup>137</sup>Cs (major γ-ray emitter).
- Container:

DE CIENCIA, INNOVACIÓN

UNIVERSIDADE

• Samples are housed in a stainless steel case.

![](_page_24_Figure_11.jpeg)

- Current capabilities:
  - sTED enables capture measurements at EAR2 from thermal to hundreds of keV.
  - Currently used in a 9-module array.
- Future upgrade:
  - Plans to upgrade to a 27-module array [35].
  - New detectors to be commissioned in 2025.
- Configuration options:
  - Initial use of 9-module setup ( $\varepsilon_{cap} = \sim 6$ ); potential switch to 27 ( $\varepsilon_{cap} = \sim 18$ ) -module configuration if performance is favorable.

![](_page_25_Picture_9.jpeg)

The counting rate estimates have been performed for 2 mg of <sup>238</sup>Pu, 9 sTEDs, including the RF and a total of 2.10<sup>18</sup> protons.

Different estimated backgrounds:

- Background produced by capture reactions in the isotopes of the pellet or in the stainless steel case (BKG Cap)
- Background produced by fission reactions in the actinides of the sample (BKG Fis)
- The empty background measured in previous experimental campaigns (BKG Empty)
- Background produced by the radioactivity of the sample mainly caused by <sup>137</sup>Cs (BKG Beam Off)

![](_page_26_Picture_7.jpeg)

Counting rate estimate u<sup>238</sup>Pu

![](_page_27_Figure_1.jpeg)

The estimated number of protons  $(2 \cdot 10^{18})$  has been chosen to have uncertainties from both the subtraction of the background and statistics that are similar.

A total of 35 resonances would be measured, with half of them having an uncertainty lower than 10%.

The plan is to perform the **measurement in 2026**. The sample is not ready in 2025.

| Measurement                 | Protons           |
|-----------------------------|-------------------|
| Pu <sup>238</sup> sample    | $2 \cdot 10^{18}$ |
| Dummy sample                | $1.10^{18}$       |
| Auxiliary and Normalization | $1 \cdot 10^{18}$ |
| Total                       | $4 \cdot 10^{18}$ |

![](_page_28_Picture_5.jpeg)

![](_page_28_Picture_6.jpeg)

![](_page_28_Picture_7.jpeg)

![](_page_28_Picture_8.jpeg)

# BACK-UP SLIDES

![](_page_29_Picture_1.jpeg)

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

![](_page_29_Picture_3.jpeg)

- **Importance:** transport, transmutation, and storage of spent fuel.
- Isotopes with half-lives **longer than 1e3 year** are mainly important in the long term disposal.
- Isotopes with half-lives shorter than 1 year

![](_page_30_Picture_4.jpeg)

![](_page_30_Figure_5.jpeg)

![](_page_30_Picture_6.jpeg)