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Outline of the presentation 

• Introduction and motivation 

 

• Previous measurements and evaluations of 238Pu 

 

• Measurement at n_TOF EAR2 

 

• Beam time request 
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• All of this isotopes have to be 

transmutated, reprocessed or dispose 
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• Importance: transport, transmutation, and storage 

of spent fuel. 

• Isotopes with half-lives longer than 1e3 year are 

mainly important in the long term disposal. 

• Isotopes with half-lives shorter than 1 year decay 
in the pool. 

 



Decay heat in nuclear reactors 

• Importance: Key for transport, transmutation, and storage of spent fuel. 

• Main contributors to decay heat: 

• 0–50 years: Fission products dominate. 

• >50 years: Actinides, including 238Pu, become significant. 

• 238Pu impact: 
• ~10% of decay heat after 10 years of cooling. 

• Main α-emitter between 10 and 103 years after shutdown. 

• For BWR: After 15.6 years, 238Pu content uncertainty leads to ~0.4% 

decay heat uncertainty [7]. 

• Research focus: Propagation of nuclear data uncertainties in decay heat 
estimation [7, 8, 9].  

238Pu PWR BWR 



238Pu for space exploration 

• Missions beyond Jupiter require Radioisotope 

Thermoelectric Generators (RTGs) for 

electrical power. 

• Plutonium-238 (238Pu) is the ideal isotope: 

• Alpha-emitter with 87.7 years half-life. 
• Provides sufficient decay heat and low 

radiation background. 

• Example: Curiosity and Perseverance rovers 

used 4.83 kg of plutonium oxide. 

13 Images obtained from https://inl.gov/mars-2020/ 



238Pu production 

• Post-Cold war: Majority of 238Pu produced in Russia. 

• U.S. production restarted: 

• Idaho & Oak Ridge National Labs. 

• Current rate: ~400 g/year; Goal: 1.5 kg/year [2][3]. 

• European efforts: 
• ESA studies at BR2 reactor (SCK-CEN) [4]. 

• Proven feasibility to reduce reliance on non-European partners [5]. 
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Optimizing 238Pu production 

Preferred neutron energy range: 

Resonance absorption region of 237Np (1–600 eV) [6]. 

Undesirable reaction: 

Neutron capture by 238Pu → Produces 239Pu (fertile, unsafe for 

reactors) [1]. 
Key Focus: 

Deeper understanding of the Resolved Resonance Region (RRR) 

for efficient 238Pu production. 
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Integral measurements of 238Pu  

PROFIL & PROFIL-2 experiments: 

• Conducted in the Phénix fast reactor [11]. 

• Irradiated nearly pure isotope samples for precise capture cross-

sections and branching ratios [10]. 

• Findings for 238Pu: 
• JEFF-3.1 library overestimates capture cross-section by ~2.5% 

[12]. The recent evaluations of this isotope has not change 

considerably.  

• Lack of significant updates due to limited new experimental data. 
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238Pu in MYRRHA reactor  

• MYRRHA overview: 

• Lead-bismuth-cooled fast spectrum reactor [13]. 

• Uses MOX fuel with 30% plutonium. 

• Relies on accurate nuclear data for criticality and safety assessments. 

• Role of 238Pu: 
• Influences neutron economy via capture (n,γ) and fission (n,f) reactions. 

• Current data libraries show discrepancies [14]. 

• Impact: 

• Affects multiplication factor (keff) calculations. 

• Urgent need for updated evaluations and new experimental 
measurements to enhance simulation reliability. 
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Overview of  238Pu neutron reaction measurements  

• Limited data availability: 

• Few measurements exist for ²³⁸Pu neutron reactions. 

• Fission reaction: 

• Most studied channel, but additional data is needed there is an 

entry in HPRL [15–19]. 
• Capture cross-Section: 

• Thermal point, there are two old measurements [20, 21] and a 

more recent one performed at the ILL in 2009 [22]. 

• Sparse data: Only two capture measurements and one 

transmission measurement available. 
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Experiment Sample 
mass 

Energy 
range 

T. E. Young 
(1967) 

~0.1 mg Thermal-
200 eV 

M. G. Silbert 
(1973) 

1.24 g 18.6-
490eV 

A. Chyzh 
(2013) 

0.4 mg Thermal-
400 eV 



 Previous capture measurements 

• 1967 (Young et al.) : 

• Transmission measurement from thermal to 200 eV. 

• Difficulties: The data are not in EXFOR and there were considerable 

issues with contaminants in the sample such as actinides and water. 

 
• 1973 (Silbert & Berreth): 

• Capture measurement from 20 to 490  eV with a nuclear explosion, 

therefore is a single shot experiment. 

• Difficulties: Use of a  single nuclear explosion unique challenges and 

high uncertainties in radiative kernels. Also, Differentiating capture γ-
rays from other background signals was complex due to the intense 

neutron flux and multi-detector arrangement.  

 

• 2013 (Chyzh et al.): 

• Capture measurement from thermal to 400 eV with DANCE at Los 
Alamos 

• Difficulties: The extreme radioactivity of ²³⁸Pu introduced significant 

background noise, complicating the isolation of neutron-capture 

events. 
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Overview of  238Pu neutron reaction measurements  

• Significant discrepancies between measurements (e.g., radiative 

kernels differ by 10–20%). 

• Compatibility issues for higher resonance areas due to large 

uncertainties in earlier experiments.  

• Therefore a new measurement is needed with a high instantaneous 
flux to reduce background and improve precision.  
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Evaluations of 238Pu 

 

• Recent libraries: JEFF-3.3, JENDL-4, JENDL-5, ENDF-VIII. 

• Based on Maslov's 1997 evaluation, combining data from Silbert 

and Young [31]. 

• JENDL-5 updates: 
• Negative resonances adjusted to match new thermal values from 

Chyzh and Letourneau [29]. 

• Thermal capture cross-section increased by 30%. 

• RRR Parameters: Remain unchanged. 
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238Pu n_TOF proposal 

We propose to perform a capture cross section at n_TOF EAR2 to measure from 2 

to 500 eV. 
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• Sample: 

•  ∼2 mg pellets provided by CEA Cadarache, in a 

stainless steel container. 

• Necessary enrichment for the measurement. 

 
• Experimental area: 

• Location: n_TOF EAR2. 

• Energy range: 2-500 eV. 

• Experimental conditions: Strong instantaneous 

neutron flux required due to the short half-life (T1/2 = 
87.7 years) and high α-particle emission. 

 

• Detectors: 

• Method: sTED with Pulse Height Weighting Technique 

(PHWT). 
• Sensitivity tailored to the experimental conditions and 

sample type. 



PROFIL samples of 238Pu 

• Sample details: 

• Four cylindrical 238Pu samples, 4 mm height, 3.75 mm diameter. 

• Produced in the PROFIL and PROFIL2 experiments [10]. 

• Irradiation: 

• Irradiated in the Phenix reactor [11]. 
• Contain ∼2 mg of 238Pu with ~70% enrichment. 

• Additional isotopes: 

• Includes 239Pu, 240Pu, 241Pu, 242Pu, 234U (∼10%), and 137Cs (major 

γ-ray emitter). 

• Container: 
• Samples are housed in a stainless steel case. 
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Detection setup 

• Current capabilities:  

• sTED enables capture measurements at EAR2 from thermal to 

hundreds of keV. 

• Currently used in a 9-module array. 

• Future upgrade:  
• Plans to upgrade to a 27-module array [35]. 

• New detectors to be commissioned in 2025. 

• Configuration options: 

• Initial use of 9-module setup (εcap=~6); potential switch to 27 

(εcap=~18) -module configuration if performance is favorable. 
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Counting rate estimates for238Pu 

The counting rate estimates have been performed for 2 mg of 238Pu, 9 

sTEDs, including the RF and a total of 2·1018 protons. 

 

Different estimated backgrounds: 

 
• Background produced by capture reactions in the isotopes of the pellet or 

in the stainless steel case (BKG Cap) 

• Background produced by fission reactions in the actinides of the sample 

(BKG Fis) 

• The empty background measured in previous experimental campaigns 
(BKG Empty) 

• Background produced by the radioactivity of the sample mainly caused by 
137Cs (BKG Beam Off) 
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Counting rate estimate u238Pu 

• Significant discrepancies between measurements (e.g., radiative 

kernels differ by 10–20%). 

• Compatibility issues for higher resonance areas due to large 

uncertainties in earlier experiments.  

• Therefore a new measurement is needed with a high instantaneous 
flux to reduce background and improve precision.  
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Estimation of number of protons 

The estimated number of protons (2·1018) has been chosen to have 

uncertainties from both the subtraction of the background and statistics 

that are similar.  

A total of 35 resonances would be measured, with half of them having an 

uncertainty lower than 10%.  
The plan is to perform the measurement in 2026.The sample is not 

ready in 2025. 
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BACK-UP 

SLIDES 
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• Importance: transport, transmutation, and storage 

of spent fuel. 

• Isotopes with half-lives longer than 1e3 year are 

mainly important in the long term disposal. 

• Isotopes with half-lives shorter than 1 year 
 Percentage after 20 

years of cooling 

down in a PWR 


