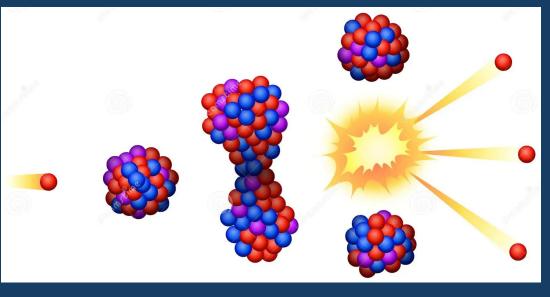
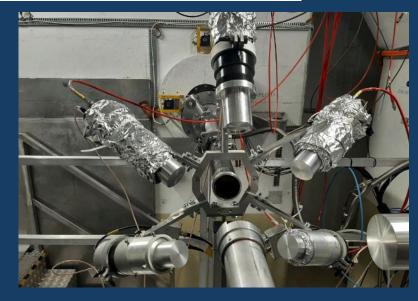

78th INTC meeting *February 2025*

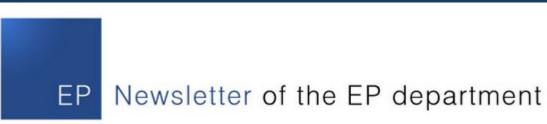
Paolo Maria MILAZZO

n_TOF Physics Report

A brief recap from the **2024** campaign — Nuclear Astrophysics


A brief recap from the **2024** campaign – Nuclear Applications


reaction	motivation	Proposal
^{166,167} Er(n,γ)	Burnable neutron absorbers for nuclear technologies	P-656
²⁰⁹ Bi(n,γ)	Radiological burden associated to ²¹⁰ Po inventory	P-675
^{92,97,98} Mo(n,γ)	Development of nuclear fuel for advanced nuclear reactors	P-569-ADD-1
²³⁸ U(n,γ)	Key reaction for any nuclear technology applications	P-672
^{63,65} Cu(n,γ)	Advanced nuclear technologies applications	P-689
¹² C(n, lcp)	Proton radiation therapy	P-651


A brief recap from the 2024 campaign – And more

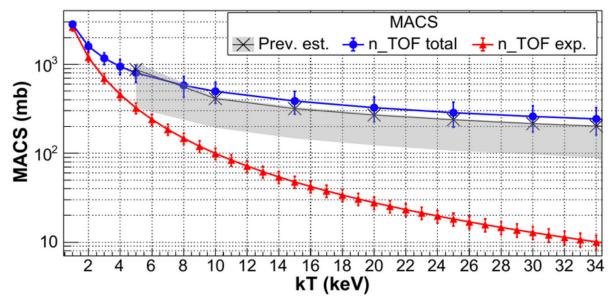
reaction	motivation	Proposal/LoI
²⁴ Mg(n,n'γ)	HPGe + LaBr3(Ce) detector test new reaction channel investigations	I-261
Ce(n,f)	search for new fission modes in light systems around Z=60	P-665
⁴⁰ Ar(n,γ)	Understanding neutron propagation in argon First capture measurement on a gas sample at n_TOF	I-256

Highlights 2024

The 2024 n_TOF run: Highlights and perspectives

å Paolo Maria Milazzo (Universita e INFN Trieste), Michael Bacak (Vienna University of Technology), and Victor Alcayne (CIEMAT) 🛗 11th Dec 2024

The origin of Lead and the s-process branching points



https://ep-news.web.cern.ch/content/origin-lead-and-s-process-branching-points

Shedding Light on the Origin of ²⁰⁴Pb, the Heaviest s-Process-Only Isotope in the Solar System

A. Casanovas-Hoste[®], ^{1,2,3,*} C. Domingo-Pardo, ² J. Lerendegui-Marco, ⁴ C. Guerrero, ⁴ A. Tarifeño-Saldivia, ² M. Krtička, ⁵ M. Pignatari, ^{6,7,8,9} F. Calviño, ¹ D. Schumann, ¹⁰ S. Heinitz, ¹⁰ R. Dressler, ¹⁰ U. Köster, ¹¹ O. Aberle, ³ J. Andrzejewski, ¹² L. Audouin, ¹³ V. Bécares, ¹⁴ M. Bacak, ¹⁵ J. Balibrea-Correa, ¹⁴ M. Barbagallo, ¹⁶ S. Barros, ¹⁷ F. Bečvář, ⁵ C. Beinrucker, ¹⁸ E. Berthoumieux, ¹⁹ J. Billowes, ²⁰ D. Bosnar, ²¹ M. Brugger, ³ M. Caamaño, ²² M. Calviani, ³ D. Cano-Ott, ¹⁴ R. Cardella, ³ D. M. Castelluccio, ^{23,24} F. Cerutti, ³ Y. H. Chen, ¹³ E. Chiaveri, ³ N. Colonna, ¹⁶ G. Cortés, ¹ M. A. Cortés-Giraldo, ⁴ L. Cosentino, ²⁵ L. A. Damone, ^{16,26} M. Diakaki, ¹⁹ E. Dupont, ¹⁹ I. Durán, ²² B. Fernández-Domínguez, ²² A. Ferrari, ³ P. Ferreira, ¹⁷ P. Finocchiaro, ²⁵ V. Furman, ²⁷ K. Göbel, ¹⁸ A. R. García, ¹⁴ A. Gawlik-Ramięga, ¹² T. Glodariu, ^{28,†} I. F. Gonçalves, ¹⁷ E. González-Romero, ¹⁴ A. Goverdovski, ²⁹ E. Griesmayer, ¹⁵ F. Gunsing, ^{19,3} H. Harada, ³⁰ T. Heftrich, ¹⁸ J. Heyse, ³¹ D. G. Jenkins, ³² E. Jericha, ¹⁵ F. Käppeler, ^{33,†} Y. Kadi, ³ T. Katabuchi, ³⁴ P. Kavrigin, ¹⁵ V. Ketlerov, ²⁹ V. Khryachkov, ²⁹ A. Kimura, ³⁰ N. Kivel, ¹⁰ M. Kokkoris, ³⁵ E. Leal-Cidoncha, ²² C. Lederer-Woods, ³⁶ H. Leeb, ¹⁵ S. Lo Meo, ^{23,24} S. J. Lonsdale, ³⁶ R. Losito, ³ D. Macina, ³ J. Marganiec, ¹² T. Martínez, ¹⁴ C. Massimi, ^{24,37} P. Mastinu, ³⁸ M. Mastromarco, ¹⁶ F. Matteucci, ^{39,40} E. A. Maugeri, ¹⁰ E. Mendoza, ¹⁴ A. Mengoni, ²³ P. M. Milazzo, ³⁹ F. Mingrone, ²⁴ M. Mirea, ^{28,†} S. Montesano, ³ A. Musumarra, ^{25,41} R. Nolte, ⁴² A. Oprea, ²⁸ N. Patronis, ⁴³ A. Pavlik, ⁴⁴ J. Perkowski, ¹² I. Porras, ^{3,45} J. Praena, ^{4,45} J. M. Quesada, ⁴ K. Rajeev, ⁴⁶ T. Rauscher, ^{47,48} R. Reifarth, ¹⁸ A. Riego-Perez, ⁴⁹ Y. Romanets, ¹⁷ P. C. Rout, ⁴⁶ C. Rubbia, ³ J. A. Ryan, ²⁰ M. Sabaté-Gilarte, ³⁴ A. Saxena, ⁴⁶ P. Sc

$(n_TOF\ Collaboration)$

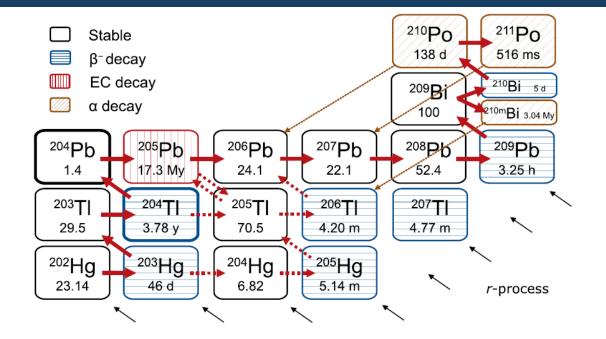


FIG. 1. Schematic view of the chart of nuclei at the termination of the *s* process. The arrows correspond to the main *s*-process path, with dashed arrows depicting paths strongly enhanced during high temperature and high neutron density events.

by using the new MACS, the uncertainty arising from the 204 Tl(n, γ) cross-section on the s-process abundance of 204 Pb has been reduced from $\sim 30\%$ down to +8%/-6%, and the s-process calculations are in agreement with the latest solar 204 Tl solar abundance of 204 Pb reported by K. Lodders (Space Sci. Rev. 217, 44 (2021))

n_TOF - Phase IV (from 2021)

Year	INTC Session	Accepted Proposal	Lol	PoT (10 ¹⁹)		Publications On Peer reviewed Journals
2020	65	6	3			
2021	66/67/68	3	3		8.0	
2022	69/70/71	9	3	2	2.5	6
2023	72/73/74	11	5	2	2.3	9
2024	75/76/77	12	5	;	3.2	12
2025	78	(4)		;	3.4	2 (+3 in the pipeline)
2026				•	1.8	

34 talks at the next

16TH NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY CONFERENC

JUNE 22ND - 27TH | MADRID (SPAIN) | 2025

https://twiki.cern.ch/twiki/bin/view/NTOFPublic/ListOfContributionND2025

4.0·10¹⁹ already approved in EAR1

Along 23 years of activity more than 150 experimental data sets have been produced, published and disseminated https://twiki.cern.ch/twiki/bin/view/NTOFPublic/DataDissemination

Full list of n_TOF publications: https://twiki.cern.ch/NTOFPublic/ListOfPublications

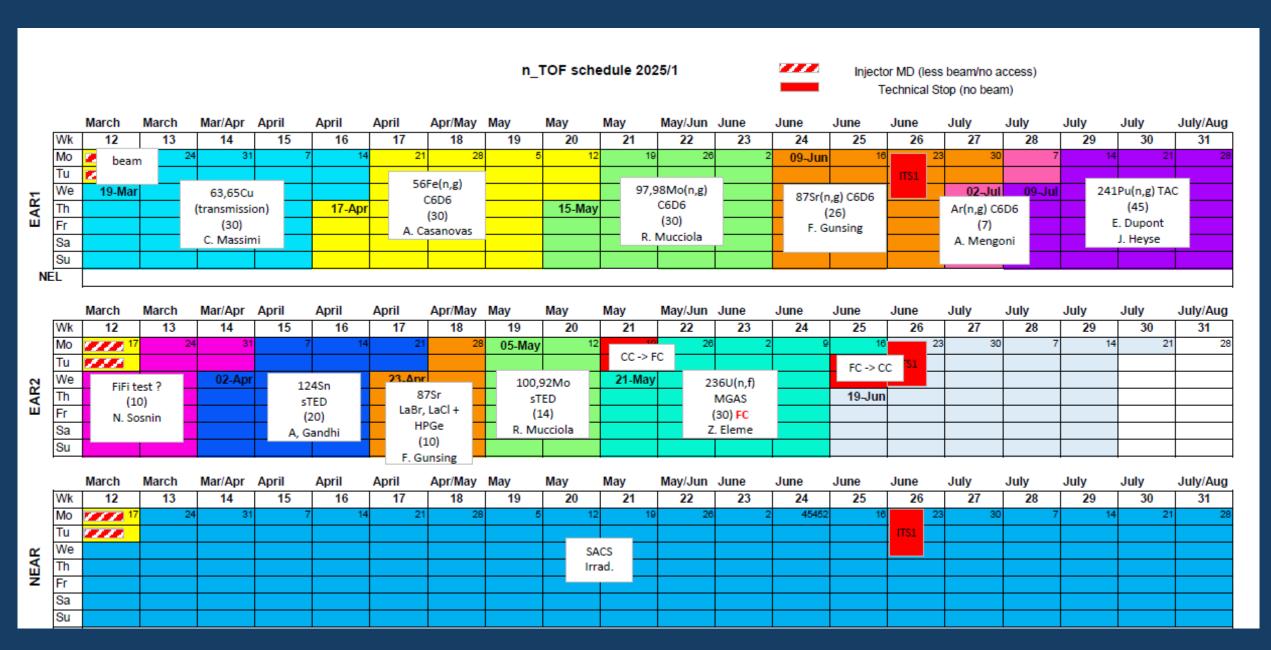
New proposals (focused on EAR2)

Searching for the X17 Particle using the novel n+ ³He Reaction

Speaker: Carlo GUSTAVINO (Istituto Nazionale di Fisica Nucleare, Italy)

Study of semiconductor detectors' performance at NEAR

Speakers: Michael BACAK (TU Wien, Atominstitut, Austria) and Maria DIAKAKI (National Technical University of Athens, Greece)


Measurement of the ²³⁸Pu(n, γ) cross-section at EAR2

Speaker: Victor ALCAYNE (Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Spain)

Search for a resonance in ²⁵Mg(n,γ) cross section to constrain the ²²Ne(α,n)²⁵Mg neutron source reaction rate

Speaker: Cristian MASSIMI (Università di Bologna and Istituto Nazionale di Fisica Nucleare

Plan for 2025 campaign (up to the end of July)

GOOD NEWS

The flow Proposal \rightarrow Experiment \rightarrow Publications is well consolidated

From 2024 we can profit of more intense proton beams (+30%); i.e. more Physics (backlog can be digested faster)

EAR1 is fully booked for 2025

Proposals presented today will fill the EAR2 (partially) and NEAR schedule

New proposals will be presented to next INTC meetings in view of 2026