High-Orders Fields in the LHC PhD Thesis Presentation

Maël Le Garrec CERN — BE-ABP-LNO

Plan

Outline

Introduction

Decapolar Studies

Dodecapolar Studies

Decatetrapolar Studies

Conclusions

Outline

- Introduction
 - · How particles are bent
 - · What problems can arise
 - LHC-specific overview
- Thesis Work
 - Decapole Studies
 - Dodecapole Studies
 - Decatetrapole Studies
- Conclusion

Plan

Outline

Introduction

Going in Circles Magnets and Optics The LHC Thesis Work

Decapolar Studies

Dodecapolar Studies

Decatetrapolar Studies

Conclusions

Going in Circles

- All particles oscillate around the ring
- The perfect particle follows the closed orbit
- \bullet The number of transverse oscillations per turn is the tune: Q_x and Q_y

Magnets and Optics

- Linear elements
 - Dipoles bend the particles
 - Quadrupoles focus the beam
- Non-Linear elements
 - Sextupoles correct off-momentum focusing (chromaticity)
 - Octupoles (b_4) correct amplitude related tune change
 - Decapoles (b_5) correct some chromaticity and amplitude detuning

Optics: a set of magnet strengths and the related observables

Resonances

Resonances aren't a nice thing

- Unstable motion, losing particles
- First goal is to avoid them
- Second is to make them weaker
- Condition:

$$a\cdot Q_x + b\cdot Q_y = p \quad ; \quad a,b,c \in \mathbb{N}$$

The LHC

Arc Structure

- Cell: basic block that is repeated
- Total of 1232 dipoles in the machine
- Correctors from sextupoles to decapoles
- Magnetic errors of magnets are modeled
 - Strong errors from dipoles need to be corrected!

Thesis Work

High order fields might become problematic once we reach higher performances with the next upgrade of the accelerator: HL-LHC.

- Magnetic error model of decapolar fields isn't accurate
 - Finding the discrepency
 - Correcting decapolar fields in operation
- Finding ways to measure higher orders and their impact
 - Dodecapoles and decatetrapoles

Understanding high order fields helps inform design and optimisation of other accelerators!

Plan

Outline

Introduction

Decapolar Studies

Magnetic Model Discrepancy Possible sources Checking the Correctors Chromatic Amplitude Detuning Decay in Main Dipoles Implementation of Decay Resonances

Dodecapolar Studies

Decatetrapolar Studies

Conclusions

Magnetic Model Discrepancy

- Corrections of third-order chromaticity Q''' based on magnetic measurements
- Discrepancies between model and measurements
 - Off by factor 2, but why?

Possible sources

Is it coming from the measurement technique itself or errors?

$$Q(\delta) = Q_0 + Q'\delta + \frac{1}{2!}Q''\delta^2 + \underbrace{\frac{1}{3!}Q''\delta^3}_{\text{this guy}} + \cdots$$

- Correctors response
- Magnetic model

 \rightarrow Need to do some more measurements to find out

Checking the Correctors

- Octupolar and decapolar correctors turned off
- Model and measurements for Q''' are still factor pprox 2 off
- Discrepancy still there despite various corrector configurations
 - \rightarrow I to K, crosstalk and coupling ruled out
 - \rightarrow Correctors do not cause the discrepancy

Chromatic Amplitude Detuning

$$\Delta Q(J_x,J_y,\delta) = \frac{\partial^2 Q}{\partial J_x \partial \delta} J_x \delta + \frac{\partial^2 Q}{\partial J_y \partial \delta} J_y \delta + \frac{1}{3!} \frac{\partial^3 Q}{\partial \delta^3} \delta^3$$

- Different expression than Q'''
- Factor ≈ 2 compared to simulations again
- First time ever measured in the LHC
 - ightarrow Points to an error in our decapolar model, in the arcs

Decay in Main Dipoles

- Computed from magnetic meas.
- Sextupolar decay implemented in operation
- Decapolar component constant in models
- Decapolar decay not implemented
- Quite large and fast at injection

- $\rightarrow \bar{b_5}$ from 1.1 to 0.6 in main dipoles
 - \rightarrow Decay is important to consider

Implementation of Decay

- ullet Average b_5 decay substracted in simulations
- Most of the discrepancy is now explained
 - $^{\circ}\,$ For Q''' and Chromatic Ampdet.
 - $\rightarrow b_5$ discrepancy comes from our error model

Resonance Driving Terms

- · Coefficient linked to a resonance amplitude
 - \circ Resonances : $(j-k)Q_x + (l-m)Q_y = p$; $p \in \mathbb{N}$
 - With j + k + l + m = n, order of field
- ullet Example of f_{1004}
 - $^{\circ}$ Excites resonance $1Q_x 4Q_y$

Turn-by-Turn Spectrum

- Several lines are clearly visible
 - AC-Dipoles tunes, due to transverse excitation
 - $^{\circ}$ Example of decapolar resonance at $4Q_y$
- Resonance Driving Terms are linked to line amplitude

Measurement and Corrections

- Corrections based on a response matrix
 - Retrieves the current needed to replicate measurement
- Simultaneous corrections of f_{1004} , $Q^{\prime\prime\prime}$ and chromatic amp.det.
- First correction of high-orders at injection

Lifetime Impact of Corrections

- Clear improvement of lifetime with correction
- And deterioration with opposite trim
 - ightarrow Gain of lifetime at injection energy of pprox 3%

Other Sources for RDT?

- Weird behaviour of the RDT
 - $\,^\circ\,$ Amplitude seemed to vary every year, even with same Q'''
 - $^{\circ}$ Additional corrections of Q'' increased it

ightarrow Corrections of Q''' not implemented in 2022

Sextupolar and Octupolar Contributions

Via higher-orders of the transfer map $e^{:h_1:}e^{:h_2:}=e^{:h:}$

$$\begin{split} h = & h_1 + h_2 & \Rightarrow 1^{\text{st}} \text{ order} \\ & + \frac{1}{2}[h_1, h_2] & \Rightarrow 2^{\text{ nd}} \text{ order} \\ & + \frac{1}{12}[h_1, [h_1, h_2]] \\ & - \frac{1}{12}[h_2, [h_1, h_2]] & \Rightarrow 3^{\text{rd}} \text{ order} \\ & + \cdots . \end{split}$$

- 1^{st} order \rightarrow decapoles
- $2^{\sf nd}$ order \to sextupoles and octupoles
- $3^{\rm rd}$ order \rightarrow sextupoles together

 \rightarrow Feed-up from sextupoles and octupoles contribute to b_5 RDTs

RDT from Landau Octupoles

- Landau Octupoles quite strong at injection energy
 - RDT one order of magnitude stronger!

Landau Octupoles Impact on Lifetime

- Artificially increased RDT to match expected octupolar impact
 - $\circ Q'''$ staying constant
 - $^{\circ}\,$ Lifetime got lowered by 10%
 - \rightarrow Higher-order effects are important

Forced Dynamic Aperture

- Corrections now implemented in operation
- Forced Dynamic Aperture clearly improved

 \rightarrow We can now kick higher with the AC-Dipole!

Plan

Outline

Introduction

Decapolar Studies

Decatetrapolar Studies

Conclusions

Dodecapolar RDT f_{0060}

- First measurement made possible this Run
 - Thanks to new collimator sequence
 - $^{\circ}\ b_4$ and b_5 corrections improving forced DA
- Nice repeatability of measurements

Dodecapolar RDT f_{0060}

- b₆ dominates
- small impacts of b_3 , b_4 , b_5
- Beam 1×2 stronger

 \rightarrow Our model is accurate for this dodecapolar RDT

Plan

Outline

Introduction

Decapolar Studies

Dodecapolar Studies

Decatetrapolar Studies Chromaticity

Conclusions

Chromaticity

- New collimation setup allowed us to increase momentum range
- Refined cleaning tune cleaning via new processing methods
 - ightarrow Clear effects of higher-order chromaticity

new!

Chromaticity

- b₇ decay in main dipoles has small impact
- Some missing sources?

ightarrow Our model differs only by 20%

Plan

Outline

Introduction

Decapolar Studies

Dodecapolar Studies

Decatetrapolar Studies

Conclusions

Conclusions

Progressed and achieved nice measurements of higher-order fields!

- Decapolar
 - Improved our understanding of decapolar fields and our model
 - Forced DA improved by novel corrections
 - First measurements and corrections of Chromatic Detuning and RDTs
- Dodecapolar
 - $^{\circ}\,$ First measurement of f_{0060} and benchmark of model
- Decatetrapolar
 - · Chromaticity measurements allow to probe up to Decatetrapole
 - \rightarrow Good first characterization of high orders in the LHC :)