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Going in Circles

® All particles oscillate around the ring
® The perfect particle follows the closed orbit
® The number of transverse oscillations per turn is the tune: @), and Q,




Magnets and Optics
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Dipole (b;) Quadrupole (b,) Sextupole (b3)

® Linear elements

° Dipoles bend the particles

o Quadrupoles focus the beam
® Non-Linear elements

o Sextupoles correct off-momentum focusing (chromaticity)
° Octupoles (b,) correct amplitude related tune change
° Decapoles (b;) correct some chromaticity and amplitude detuning

Optics: a set of magnet strengths and the related observables

High-Orders Fields



Resonances
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Resonances aren't a nice thing

® Unstable motion, losing particles
® First goal is to avoid them
® Second is to make them weaker

® Condition:

a-Q,+6-Q,=p ; abceN



The LHC
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Arc Structure

106.90 m

® Cell: basic block that is repeated
® Total of 1232 dipoles in the machine
® Correctors from sextupoles to decapoles

® Magpnetic errors of magnets are modeled
o Strong errors from dipoles need to be corrected!
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Thesis Work

High order fields might become problematic once we reach higher
performances with the next upgrade of the accelerator: HL-LHC.

® Magnetic error model of decapolar fields isn't accurate
° Finding the discrepency
o Correcting decapolar fields in operation

® Finding ways to measure higher orders and their impact
o Dodecapoles and decatetrapoles

Understanding high order fields helps inform design and optimisation
of other accelerators!
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Magnetic Model Discrepancy
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® Corrections of third-order chromaticity Q” based on magnetic measurements

® Discrepancies between model and measurements
o Off by factor 2, but why?




Possible sources

Is it coming from the measurement technique itself or errors?

1 1
Q) = Qo + Q0+ 5Q"6* + Q"% + -~
this guy

® Correctors response
® Magnetic model

— Need to do some more measurements to find out




Checking the Correctors
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® QOctupolar and decapolar correctors turned off
® Model and measurements for Q" are still factor ~ 2 off
® Discrepancy still there despite various corrector configurations

— | to K, crosstalk and coupling ruled out
— Correctors do not cause the discrepancy




Chromatic Amplitude Detuning
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® Different expression than Q”
® Factor ~ 2 compared to simulations again
® First time ever measured in the LHC

— Points to an error in our decapolar model, in the arcs




Decay in Main Dipoles

® Computed from magnetic meas.
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Sextupolar decay implemented in operation
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® Decapolar component constant in models
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® Decapolar decay not implemented
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w0 % W e ® Quite large and fast at injection
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Figure 31: Decay of integrated bs at injection (430 apertures) and the decay fit (black line).

— by from 1.1 to 0.6 in main dipoles
— Decay is important to consider




Implementation of Decay
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® Average b; decay substracted in simulations
® Most of the discrepancy is now explained

° For @” and Chromatic Ampdet.

— by discrepancy comes from our error model
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Resonance Driving Terms
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® Coefficient linked to a resonance amplitude
° Resonances : (j —k)Q, +(—m)Q,=p ; peN
o With j+ k4 1+ m = n, order of field

® Example of fo4

° Excites resonance 1Q), —4Q,




Turn-by-Turn Spectrum
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® Several lines are clearly visible

o AC-Dipoles tunes, due to transverse excitation
o Example of decapolar resonance at 4Q),

® Resonance Driving Terms are linked to line amplitude




Measurement and Corrections
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® Corrections based on a response matrix

° Retrieves the current needed to replicate measurement

® Simultaneous corrections of f,qy,, @” and chromatic amp.det.
® First correction of high-orders at injection




Lifetime Impact of Corrections
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® Clear improvement of lifetime with correction
® And deterioration with opposite trim

— Gain of lifetime at injection energy of ~ 3%




Other Sources for RDT?
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® Weird behaviour of the RDT

° Amplitude seemed to vary every year, even with same Q"
o Additional corrections of Q” increased it

— Corrections of Q” not implemented in 2022




Sextupolar and Octupolar Contributions
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— Feed-up from sextupoles and octupoles contribute to b; RDTs




RDT from Landau Octupoles
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® | andau Octupoles quite strong at injection energy

° RDT one order of magnitude stronger!




Landau Octupoles Impact on Lifetime
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® Artificially increased RDT to match expected octupolar impact

° " staying constant
o Lifetime got lowered by 10%

— Higher-order effects are important




Forced Dynamic Aperture
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® Corrections now implemented in operation
® Forced Dynamic Aperture clearly improved

— We can now kick higher with the AC-Dipole!
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Dodecapolar Studies
Dodecapolar RDT fyo60




Dodecapolar RDT f440
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® First measurement made possible this Run

o Thanks to new collimator sequence
° b, and by corrections improving forced DA
® Nice repeatability of measurements




Dodecapolar RDT f440
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— Our model is accurate for this dodecapolar RDT
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Decatetrapolar Studies
Chromaticity




Chromaticity
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new!

® New collimation setup allowed us to increase momentum range
® Refined cleaning tune cleaning via new processing methods

— Clear effects of higher-order chromaticity

igh-Orders Field:



Chromaticity
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® b, decay in main dipoles
has small impact

® Some missing sources?

— Our model differs only by 20%
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Conclusions

Progressed and achieved nice measurements of higher-order fields!

® Decapolar

° Improved our understanding of decapolar fields and our model
o Forced DA improved by novel corrections
° First measurements and corrections of Chromatic Detuning and RDTs

® Dodecapolar

° First measurement of fs, and benchmark of model

® Decatetrapolar
o Chromaticity measurements allow to probe up to Decatetrapole

— Good first characterization of high orders in the LHC :)

High-Orders Fields in the LHC
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