
CMS Offline Software
CI/CD System

Joint Experiment Meeting
06/02/2025

CMS Offline Software: CMSSW
❖ Hosted on github and has a large actively developed code base

➢ Over 8M lines of code
■ 4+M C/C++, 1.6M python, 250K Fortran, 2.2M XML Geometry/data

➢ Source code is organized in 1300 Packages
■ Each packages can build one public shared lib and multiple plugins/executables

❖ 650+ externals are needed at build/runtime
➢ ROOT, Geant4, Tensorflow, PyTorch, ONNXRuntime, Cuda, ROCm, GCC, LLVM …
➢ All externals are built and distributed in form of RPMs along with CMSSW releases

❖ 13 Open release cycles and 24 supported architectures
➢ OS: slc6 - el9
➢ Computer architectures: x86_64, aarch64, riscv64, recently dropped ppc64le support
➢ Compilers: GCC 4.7 - GCC 14.2

2

https://github.com/cms-sw/cmssw

CMS CI/CD Infrastructure

3

Frontend
2FA

Build artifact
cmssdt

OpenStack VMs, lxplus,
HTCondor (CPU, GPU, ARM)

EOS

LXR/DXR
Doxygen

OpenSearch

Other resources
LUMI
RiscV
Grid3 orgs/230+ repos

Webhooks

x86_64: 50 VM (16Cores)
aarch64: 2 VMs (40 Cores)

RPM repository

IB
/R

el
ea

se
 d

ep
lo

ym
en

t

CMS’ Automation Server
❖ Jenkins is our automation server since 2013

➢ 16 Cores/32GB OpenStack based VM
➢ Accessible to CMS members via 2FA enabled front-end server
➢ Runs over 10K jobs/day with <1% failure rate

■ A build is mark failed only if there are
● Infrastructure issues (filesystem, network, github, VM misbehaving etc.)

◆ Most of these failures are fixed after automatic retries
● Bugs/Errors in the job itself

■ Failure in actual tests (Unit tests, Release validation, etc.) do not mark build as failed
● Such failures are reported somewhere else: Github issues, PRs, IB dashboard etc.

❖ Nearly all projects are based on cms-bot scripts
➢ All projects are based on freestyle general purpose Jenkins jobs
➢ Job workflow is controlled by chaining Jenkins Projects (Upstream -> Downstream)

4

https://github.com/cms-sw/cms-bot

CMS Jenkins
❖ Fully configured via Puppet

➢ OpenStack/HTCondor based build agents are automatically added/removed
➢ Updating Jenkins version is as simple as pushing the change to puppet

❖ Jenkins’ configuration (jobs, nodes , secrets, plugins etc.) is backed up
➢ Backup runs every 5 mins: Couple of minutes for full backup

❖ Jenkins backup is used during major migrations or testing new versions
➢ Moving servers due to H/W upgrade or move to new OS
➢ Testing Jenkins new major versions e.g. moving to Java 11 or Java17

❖ 99.99% uptime and maintenance requires <5% of time
➢ Jenkins/Plugins versions update: 2-3 mins downtime
➢ Major migrations/upgrades: 5-10 mins downtime

5

Why Jenkins?
❖ Clear winner when we migrated away from cron jobs in 2013
❖ Now a days one has a choice of Github actions, Gitlab CI/CD, Circle CI etc.

➢ It really depends what are project’s requirements and complexity
➢ Github Actions, Gitlab CI/CD are mostly good for organizations with few repositories

■ Sharing self hosted resources between different organizations is not possible unless one
buys Enterprise account

● Github recommends to only use self-hosted runner for private repositories
■ One needs to install and run technology specific software

● Not all architectures are supported e.g. Github Actions self hosted runner software
is not available for ppc64le and RiscV architectures OR CentOS 7 and earlier OS

❖ Number of jobs we run are way over Github actions Free plan limits

6

https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners#self-hosted-runner-security

Jenkins’ Freestyle Projects

❖ Makes Jenkins’ management really easy
➢ We know which plugins are used and where

■ Makes updating plugins versions much easier
● In case of breaking changes we only need to test selected projects

■ Helps cleaning up unused/unmaintained plugins
➢ Automation for retry of failed jobs is much easier
➢ Only a small number plugins are required

■ ~90 plugins are installed in our production Jenkins instance

❖ Easy to find which build nodes/agents are in use
➢ Each agent’s build history shows what jobs were run on it
➢ This is not possible with pipeline projects unless one install extra plugins

7

CMS Continuous Integration
❖ Based on github webhooks and freestyle Jenkins projects

➢ Single Jenkins job to receive webhooks from all of our repositories (230+ from 3 github Orgs)

❖ We do not use Github Pull request plugin
➢ Uses polling and consumes a lot of GH API calls especially when one has to manage

hundreds of repositories
➢ Security issues and also unmaintained

❖ No pipeline or multi-configuration projects
➢ Require a lot dependent plugins
➢ Make Jenkins management/updates really hard
➢ Not easy to automate the retry of failed stages

8

Jenkinsfile (Declarative Pipeline)
pipeline {
 agent any
 stages {
 stage('Build') {
 steps { echo 'Building..'}
 }
 stage('Test') {
 steps { echo 'Testing..' }
 }
 stage('Deploy') {
 steps {echo 'Deploying....' }
 }
 }
}

CMS Continuous Integration…

9

CMSSW

(30
 day

s)❖ CMS Offline software monthly gets over 350 Pull
Requests
➢ Automated PR testing system allows us to integrate over

90% of these

❖ On avg. we run 20 Pull Request testing jobs/day
➢ Each jobs can take 2-4 hours (depending on the change)

■ Run small subset of release validation tests (~220 out
of 4.8K)

■ Unit tests
■ HLT test
■ Reconstruction/DQM comparisons
■ Static analysis
■ etc.

Exte
rn

als

(30
 day

s)

10

CMS Pull Request results

Pull Request testing workflow

11

w
eb

ho
ok

s

In order to ensure software
relocatability we build and
run tests on different hosts

Each box is separate
Jenkins job

12

CMSSW Integration Build (IB)
❖ IBs are build every 12 hours

➢ Force build full IB on Sunday for all open release cycles
➢ Build full IB if externals packages are changed
➢ Build patch/incremental IB if only CMSSW code is changed
➢ Although Jenkins triggers 80+ IBs/day but on avg. 30 IBs/day are build

❖ IB are built for all Open release cycles/architectures
➢ X86_64 IBs/releases of latest release cycle (15.0.X) are built for two micro-archs

■ x86-64-v3 (default) , x86-64-v2
■ Dynamically set runtime env based on the host

❖ Over 6K+ tests run for every IB
➢ All tests run in parallel on different hosts. Majority of tests results are available with in couple of hours

■ Some long running tests can take 6+ hours
➢ 40+ hours worth of tests are run for production architectures

❖ IBs are available on CVMFS for two weeks

13

CMS Integration Build

IB
 das

hboard

IB flavors/OS/archs/compilers
for development release cycle

Integration Build workflow

14

CMS Offline Software
Build System (SCRAM)

SCRAM

❖ Software Configuration Release and and Management tool
❖ Developed and used by CMS since 1998

➢ In early/mid 2000’s, LCG projects like CORAL, POOL and SEAL also used it

❖ Just like CMake, it is build system configuration generator
➢ SCRAM uses MAKE as backend
➢ Converts user defined requirements from BuildFiles into MAKE rules

❖ As a project configuration manager its helps
➢ Finding and using existing IBs/releases
➢ Setup runtime environment

■ Dynamically select the best env at runtime
➢ Apply/Control site/project specific rules

16

Bu
ild

 s
ha

re
d

lib
ra

ry

SCRAM: V1 vs V2

❖ Major rewrite was done in 2008 to improve its performance
➢ Reduce code size: 35 PERL modules instead of 100+ in V1
➢ Parallel builds support
➢ Improve disk usage: Helped developers to develop on shared file-systems like AFS/EOS

17

SCRAM V3

❖ In order to reduce PERL dependency, in 2020, V3 was rewritten in PYTHON
➢ Reduce code base: 5.5K instead of 13K
➢ User interface remained same
➢ For better tooling, used json format to store SCRAM’s internal caches

18

Why SCRAM

❖ Easy to use
➢ Search available IB/releases: scram list
➢ Create developer area: scram -a el8_amd64_gcc12 project CMSSW_Version
➢ Build: scram build -j $(nproc)
➢ Setup runtime environment: eval `scram runtime -sh|-csh`
➢ Reset runtime environment: eval `scram unset -sh|-csh`

❖ In 2018, we evaluated CMake but results were not promising
➢ Auto converted BuildFiles to CMakeLists.txt
➢ Converted SCRAM’s tool-files to CMake’s Find<Tool>.cmake
➢ CMake configure step was 30+ times slow

■ 30+ times more disk usage
■ Generating a lot of small files per compilation unit
■ Not good for using it on shared file-systems AFS/EOS or Ceph volumes

19

https://github.com/cms-sw/cmssw2cmake

SCRAM(V2) vs CMAKE: Configuration step

20

SCRAM(V2) vs CMAKE: Build time comparison

21

CPU Load

CPU/Network
Utilization

SCRAM(V3) vs CMAKE

22

❖ Comparing SCRAM performance with actual similar size CMake based
project (ATHENA) shows that SCRAM still out perforces CMAKE
➢ For comparison, I use Athena release/25.2.39 and CMSSW 15.0.X IB of 23rd JAN
➢ Tests were done on a 16 core Openstack VM on local SSD
➢ GCC 13 , AlmaLinux9

SCRAM(V3) vs CMAKE

23

SCRAM GMake

Summary

❖ CMS has a robust/scalable CI/CD system which has ensured high quality of
Integration build and releases
➢ Integration builds has the same quality of major release
➢ Helped us test and integrate latest versions of externals with in a day

❖ SCRAM, though over 27 years old, but has not shown any aging
➢ Easy to maintain: over 50% of PYTHON rewrite of V3 was done by a student

24

