CMS Offline Software
Cl/CD System

Joint Experiment Meeting
06/02/2025

CMS Offline Software: CMSSW

7/

% Hosted on github and has a large actively developed code base
> Over 8M lines of code

m 4+M C/C++, 1.6M python, 250K Fortran, 2.2M XML Geometry/data
> Source code is organized in 1300 Packages

m Each packages can build one public shared lib and multiple plugins/executables
% 650+ externals are needed at build/runtime
> ROOT, Geant4, Tensorflow, PyTorch, ONNXRuntime, Cuda, ROCm, GCC, LLVM ...
> All externals are built and distributed in form of RPMs along with CMSSW releases
% 13 Open release cycles and 24 supported architectures
> 0OS:slc6 -e€l9

> Computer architectures: x86_64, aarch64, riscv64, recently dropped ppc64le support
> Compilers: GCC 4.7 - GCC 14.2

https://github.com/cms-sw/cmssw

CMS CI/CD Infrastructure <86 64: 50 VM (16Cores)

aarch64: 2 VMs (40 Cores)

O Webhooks

Other resources
LUMI

GitHub

3 orgs/230+ repos/

njs

RPM repository

0

0

1=

Build artifact
cmssdt

Frontend
2FA

RiscV
Grid

118 Y -\ e
kins OpenStack VMs, prlu, |
HTCondor (CPU, GPU, ARM)

Y \/s - FOREMAN
LXR/DXR \r(m S
Doxygen ‘
OpenSearch EOS CernVM-FS VA APPTAINER

CMS’ Automation Server

0.

< Jenkins is our automation server since 2013 I‘||||||I|II|||IIII|||||II||&
W50

> 16 Cores/32GB OpenStack based VM 0 R L w0 Bt
> Accessible to CMS members via 2FA enabled front-end server
> Runs over 10K jobs/day with <1% failure rate
m Abuild is mark failed only if there are
e Infrastructure issues (filesystem, network, github, VM misbehaving etc.)
€ Most of these failures are fixed after automatic retries
e Bugs/Errors in the job itself
m Failure in actual tests (Unit tests, Release validation, etc.) do not mark build as failed
e Such failures are reported somewhere else: Github issues, PRs, IB dashboard etc.
% Nearly all projects are based on cms-bot scripts
> All projects are based on freestyle general purpose Jenkins jobs
> Job workflow is controlled by chaining Jenkins Projects (Upstream -> Downstream)

https://github.com/cms-sw/cms-bot

C M S J en ki ns hg_vocnssdt: :jenkins: :utils: :setup_jenkins {'/build':

jenkins_version => '2,479.2",

. : + Jjenkins_version => '2.479.3',
% Fully configured via Puppet

> OpenStack/HTCondor based build agents are automatically added/removed
> Updating Jenkins version is as simple as pushing the change to puppet

% Jenkins’ configuration (jobs, nodes , secrets, plugins etc.) is backed up
> Backup runs every 5 mins: Couple of minutes for full backup

% Jenkins backup is used during major migrations or testing new versions
> Moving servers due to H/W upgrade or move to new OS
> Testing Jenkins new major versions e.g. moving to Java 11 or Java17

% 99.99% uptime and maintenance requires <5% of time

> Jenkins/Plugins versions update: 2-3 mins downtime
> Major migrations/upgrades: 5-10 mins downtime

Why Jenkins?

% Clear winner when we migrated away from cron jobs in 2013

% Now a days one has a choice of Github actions, Gitlab CI/CD, Circle CI etc.
> It really depends what are project’s requirements and complexity
> Github Actions, Gitlab CI/CD are mostly good for organizations with few repositories
m Sharing self hosted resources between different organizations is not possible unless one
buys Enterprise account
e Github recommends to only use self-hosted runner for private repositories
m One needs to install and run technology specific software
e Not all architectures are supported e.g. Github Actions self hosted runner software
is not available for ppc64le and RiscV architectures OR CentOS 7 and earlier OS

% Number of jobs we run are way over Github actions Free plan limits

https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners#self-hosted-runner-security

Jenkins’ Freestyle Projects

% Makes Jenkins’ management really easy

> We know which plugins are used and where

m Makes updating plugins versions much easier
e In case of breaking changes we only need to test selected projects

m Helps cleaning up unused/unmaintained plugins

> Automation for retry of failed jobs is much easier

> Only a small number plugins are required
m ~90 plugins are installed in our production Jenkins instance

% Easy to find which build nodes/agents are in use
> Each agent’s build history shows what jobs were run on it
> This is not possible with pipeline projects unless one install extra plugins

CMS Continuous Integration

% Based on github webhooks and freestyle Jenkins projects
> Single Jenkins job to receive webhooks from all of our repositories (230+ from 3 github Orgs)
% We do not use Github Pull request plugin

> Uses polling and consumes a lot of GH API calls especially when one has to manage
hundreds of repositories

> Security issues and also unmaintained / \
% No pipeline or multi-configuration projects At 2
> Require a lot dependent plugins sngesuia)

steps { echo 'Building.."}

> Make Jenkins management/updates really hard
> Not easy to automate the retry of failed stages

}
stage('Test') {
steps { echo 'Testing.." }

}
stage(‘'Deploy’) {
steps {echo 'Deploying...." }
}
}
}

- /

CMS Continuous Integration...

% CMS Offline software monthly gets over 350 Pull

Requests
> Automated PR testing system allows us to integrate over
90% of these

% On avg. we run 20 Pull Request testing jobs/day

> Each jobs can take 2-4 hours (depending on the change)

m Run small subset of release validation tests (~220 out

of 4.8K)
Unit tests
HLT test
Reconstruction/DQM comparisons
Static analysis
etc.

217 Active pull requests 54 Active issues

- 180 1437 ©®2 ®33
Merged pull Open pull Closed New issues
requests uests issues

Excludgms n’@_ges, 46 authors
hav slﬁl 334 commits to
351 commits to all
bran s. On master, 1,888
files ve changed and there
have been 35,815 additions
and 19,541 deletions.

mags r

88 Active pull requests 5 Active issues

£ 79 19 Q ©3 ©2
Merged pull Open p%\ Closed New issues
requests req“ 6 {ssues
Excludg m es, 13 authors
have

sh@ 50 commits to
IB/CNMS 15_0O_X/master and
164 com its to all branches.
On IB/CMSSW_15_0_X/master,
43 files have changed and
there have been 282 additions
and 115 deletions.

CMS Pull Request results

AddOn Tests

Comparison failed
Comparison with the baseline
Compilation log

Compilation warnings summary
DQM bin by bin comparison
External Build Logs

External Build Stats

External tool conf

Externals Checks

Externals compilation

HLT Trigger comparison
Matrix Tests Outputs
Package dependency

Unit Tests

User Test materialBudgetTrackerPlots

max memory used comparison

See Logs
See failed
See Comparison Results
See Log
See Logs
See results
See Log
See Log
See log
See log
See Log
See results
See Logs
See Log

See Log
A\ Errors Found

See Log

See results

cmsbuild commented 12 hours ago Member ***

+1

Size: This PR adds an extra 20KB to repository

Summary: https://cmssdt.cern.ch/SDT/jenkins-artifacts/pull-request-integration/PR-f5f3ab/44199/summary.html

COMMIT: a1b23cd

CMSSW: CMSSW_15_0_X 2025-02-04-1100/el8_amd64 gcc12

Additional Tests: GPU

User test area: For local testing, you can use /cvnfs/cms-ci.cern.ch/weekl/cms-sw/cnssw/47263/44199/install.sh to create a dev

area with all the needed externals and cmssw changes.

Comparison Summary

Summary:

* You potentially added 78 lines to the logs

* Reco comparison results: 4 differences found in the comparisons
* DQMHistoTests: Total files compared: 50

* DQMHistoTests: Total histograms compared: 4016938

GPU Comparison Summary

Summary:

* Nosignificant changes to the logs found
* Reco comparison results: 0 differences found in the comparisons
* DQMHistoTests: Total files compared: 7

10

Pull Request testing workflow

e § ib-schedule-pr- ib-run-pr-tests PR
o i tests Schedule o

cms. f— sw/cmssw#47263

sw/cmssw i cms- el8_amd64_gcc12

#47263 : sw/cmssw#47263 CM_SSW_1E_0_X

>

webhooks

GitHub

Each box is separate
Jenkins job

T

—

\

abort-pr-tests
#47574

ib-run-pr-addon

14 checks passed

P a cms/47216/el8_amd64_gcc12/comparison Finished, please check results

A 3 cms/47216/el8_amd64_gcc12/comparison/gpu Finished, please check results
v a cms/47216/el8_amd64_gcc12/relvals Passed

F 3 cms/47216/el8_amd64_gcc12/relvals/gpu Passed

7 a cms/47216/el8_amd64_gcc12/relvals/input Passed

e 3 cms/47216/el8_amd64_gcc12/required Finished

v a cms/47216/el8_amd64_gcc12/unittest Passed

ib-run-pr-wait-
deployment | —(Rcme x
#80894 sw/cmssw#47263 4 3 cms/47216/el8_amd64_gcc12/unittests/gpu Passed
el8_amd64_gcc12
ib-run-pr-relvals compare-root-files-short- R
ib-run-pr-wait- PR cms- matrix g
deployment —— sw/cmssw#47263 CMSSW_15_0_X_2025- e —
#82895 el8_amd64_gcc12 02-04-1100 + cms- ‘ #4763
gpu sw/cmssw#47263 gpu
ib-run-pr-relvals
ib-run-pr-wait- PR cms-
deployment —— sw/cmssw#47263
#82896 el8_amd64_gcc12
input
; ; ib-run-pr-relvals obats oot et o cms-bot
ib-run-pr-wait- PR cms- matrix oms-
deployment — CMSSW_15_0_X_2025-
#80897 sw/cmssw#47263 02041100 Eorne: ‘ sw/cmssw
el8_amd64_gcc12 #47263

ib-run-pr-wait-
deployment
#82898

pr-publish-cmssw
PR cms-

sw/cmssw#47263
el8_amd64_gcc12

ib-run-pr-unittests
PR cms-
sw/cmssw#47263
el8_amd64_gcc12
cuda

sw/cmssw#47263

In order to ensure software
relocatability we build and
run tests on different hosts

11

CMSSW Integration Build (IB)

O
L X4

\/
%

X/

%

7
%

IBs are build every 12 hours
> Force build full IB on Sunday for all open release cycles
> Build full IB if externals packages are changed
> Build patch/incremental IB if only CMSSW code is changed
> Although Jenkins triggers 80+ IBs/day but on avg. 30 IBs/day are build
IB are built for all Open release cycles/architectures
> X86_64 IBs/releases of latest release cycle (15.0.X) are built for two micro-archs
m x86-64-v3 (default) , x86-64-v2
m Dynamically set runtime env based on the host
Over 6K+ tests run for every IB

> All tests run in parallel on different hosts. Majority of tests results are available with in couple of hours
m Some long running tests can take 6+ hours
> 40+ hours worth of tests are run for production architectures

IBs are available on CVMFS for two weeks

12

CMS Integration Build

DEFAULT UBSAN_X TF_X ROOT6_X ROOT634_X ROCM_X RNTUPLE_X PY312_X NOOFAST_X NONLTO_X MULTIARCHS_X
MULTIARCHSV4_X GPU_X GEANT4_X G4VECGEOM_X DEVEL_X DBG_X CXXMODULE_X CUDART_X CLANG_X ASAN_X

OS: el8 el9 CPU: aarche4 amde4 Compiler: gec12 gecl3 gecls IB flavors/OS/archs/compilers
for development release cycle

CMSSW_15_0_X_2025-02-03-2300

W BTagv O HLT E HLT Phase2 Timing [E Class Versions ESIGIERGANANZERE Crab [E] Code complexity metrics [E Flaw finder [IgProf [Vtune E Resources Piecharts & RECO event loop & RECO GPU module timings [Static
Analyzer [SA thread unsafe modules [Z] SA thread unsafe EventSetup products [E] Header consistency ¥ FWLite

DEFAULT UBSAN_X ROOT6_X RNTUPLE_X NONLTO_X MULTIARCHS_X MULTIARCHSV4_X GPU_X DEVEL_X CLANG_X ASAN_X

el8 el9
aarch64 WM aarch64

el9 els eld els els els o el8 el9 el8 el8 el8 el8

amdée4 amdé4 amdé4 amdé4

amdé4 amde4 amdé4 amdé4 amdé64 amdé4 a..d64 amdé4 amdé4

gcei2 geel2 gce12 gee12 geeld geel2 geel2 gce12 o, gcel12 gce12 gce12 gce12 gce12 geei2 gcel12
D N O O @D CEE CE m Full Build S FullBuild Full Build

Builds © (0] Q Q Q Q (0] ° Q Q ©

UnitTests () Q (0] Q Q 0] 2 (@] 0] 0]

Revais [il 4656 | %6 [5 |

wres @ @ @B @B B B B o B o Q

QA (Q | o Q] Q| 2} (o] € Q| Q) Q) Q)

13

Integration Build workflow

S S S oS s e s [o= R = T
oo 0261 | [t o pages w0331 e ctmese e sz
180X 25 || XD 2 CMSSW._15_0 X 202602042500
s Csrcns etz s amatt geer2 it amsie aee 12

procass starmalsiaste.sat #5307 |

b-run-aa CNISSW_15_0_X_2025-0004-2300
oi8_amae_gect2

ib-validation

CMSSW_15_0_X_2025-

02-04-2300
el8_amd64_gcc12

ib-run-addons
CMSSW_15_0_X_2025-
02-04-2300
el8_amd64_gcc12

eSS 8 63 36380200500
8 amatd gect2

s cuss
8 e gtz 20

X_2025.02.04 2300

L E——————— [—————]
S— N ey st marges o i8R
bV e l
| G N [e et

ib-run-gqa
CMSSW_15_0_X_2025-
02-04-2300
el8_amd6é4_gcc12

0 X 20202042300

P

T ——

rossssevaogs o #123258

N upsarsas-auares szmr021

e

| Sommaryormersseps stz308

i CUSSN 0 o300
prips e

————

rocess onatiogs. caanup #122258

J

ib-run-relvals
CMSSW_15_0_X_2025-
02-04-2300
el8_amd64_gcc12 1of4

- iz CUSSI_15

 scnasue scsser /150 X 2026020 Y | crmeom s sca ccmparacn #7168 CHSSVL_:
2500 - we_amass_geet2 57 ax 2300 8 amas, goe12 8

J sscae sas avanes 20120

N

)

summary<hmergedors $425071

K femaser e I
SE2e300 68 amate- e

ib-run-relvals
CMSSW_15_0_X_2025-
02-04-2300
el8_amd64_gcc12 2of4

ib-run-relvals
CMSSW_15_0_X_2025-
02-04-2300
el8_amd64_gcc12 3of4

b-run-relvals
CMSSW_15_0_X_2025-
02-04-2300
el8_amd64_gcc12 4of4

ib-schedule-additional-
tests
CMSSW_15_0_X_2025-
02-04-2300 -
el8_amd64_gcc12

Nee

a0t comparon #7170 CMSSW_IE.
2.04.2300 88 amath_ges12 e

N o srersens i cusiin_is e sz czoe
2300 o _amoe4_gec

(- i CHISEW_18_6_X_1035-02.04-1360 -
e 12

N o ssitensimss etonan Ui 35
02942300 ¢8_amate.

ey CUSSI 8 0 X 0aE 2 04250
o8 amast_gex

c-cmaseogex CMSSW_15_0 X 202802042300

T

e CHSSI_18.0 X 3075002500
e et ee

J e e ncex CNSSW_15_0_X 202502042300

o st st e ens
(CMSSW_15_0_X_2025.02.04-2300 o1_ame4_gcc12

= s CUSE_18 oY 30385045380

I

o2 ametegec
S sadnoraiiens wu CHESILTE S V1802 EDOE
2200 ot8_amase_gec: e 8 amase_geet2

K/ E-un-adatonaitess tawinger CHSSW_15.0 X 3025 et NSSW_i5_0_X 20253204259
07543300 85 _smate_geets P

N = ur-asataraias s smng
CUSSW_15.0_X.2020507.04 300

NS astimmsiess ot cusEv 155,
o

e e e

e CusE e o s

S anis s 1 ST

] e erse sz sz

W=

]

W g

N e soerrcussw_ e o X mozsaz-
543300 o _amast_ges'2

e USSP o X zozs ot
¢_geet2 mp 43111 138860

| ——

| (G

N S asaonsines sqprrcnssw s o X seasss-
042300 8 _amasigec!

[o-rn ool CUISSYL_18_0 X 203843642300
i _amate_gest2 m | 53421

et sma sranss

H cpnn o catsze 220752 roting

e
(CMSSW_15_0_X_2025.02-04-2300 o8_ameé_sce12

e amoee_gee

et e MBS
235 i e g

P

i US55 X 250204239
<t e

N S asa s as mizars CVSSW_i8_0_x 20254106
2300 o8 _amesgeet2

L= ur-asataraiass mavoting CUSSH_ 2502
542300 w8 amitt 312

iz CMSS_18_0 X S038.2304.3300
o amatd_gectz

X3
Hz‘_.w_nmz 130582

N [Erur-sdstonsitess wgerot CMSSW_15_0_X_2025-02- [-runsgaeof CMSSVI_13_0_X_2025-02.04-2300
e PSSR il
———— e =
N om0 S o I W
e e (o-rn oot CMSSV_18_0_¥_3025.43.04-2300 S
klu 2300 e _s m&l |e_amaB4_goc12 pp - 2083421 ™ — R — — v
K emer-ssstarsitess smai o mmﬂwnﬂm CMSSI_15_0_X 20250204

M

\
|

N orrasaoratuss sootieg cussm_is_o X 053
042300 2 _amast_geet2

I
I—*].._.m« geet2 2883427

AT
3_amand_geera 2083421

[
J L

(2 asanansisass sammee snacke
(CMSSW_15_0_X_2025.02.04-2300 o1_amded_gce12

|—| o8 _amata_gect2

0K

2 _sméth_gert2 2063427

X3
8 amdts geet2 1303421
ofing CISSW_15_0_X_202502-04-2300
S e geerd 1308437
Scprotiean 10813

Sncoroieden $110815

{opeatecresstsser 420752 ercting

CMS Offline Software
Build System (SCRAM)

SCRAM

% Software Configuration Release and and Management tool
% Developed and used by CMS since 1998

> In early/mid 2000’s, LCG projects like CORAL, POOL and SEAL also used it
% Just like CMake, it is build system configuration generator

> SCRAM uses MAKE as backend Cuse name="tbb"/> mé
> Converts user defined requirements from BuildFiles into MAKE rules <use name-"DataForma&Common"h
% As a project configuration manager its helps Use name DataFO@s/Provenance &
> Finding and using existing IBs/releases cuse ane="FiCoubaraneterset” >
> Setup runtime environment Cuse name="F%°’e/UtllltleS"/>
m Dynamically select the best env at runtime <eXPOPt>.\b

> Apply/Control site/project specific rules <lib a$="1“/>

¢/export)

16

SCRAM: V1 vs V2

% Maijor rewrite was done in 2008 to improve its performance

> Reduce code size: 35 PERL modules instead of 100+ in V1
> Parallel builds support

> Improve disk usage: Helped developers to develop on shared file-systems like AFS/EOS

CMSSW (Full Release): SCRAM/gmake overhead

900 CMSSW (Dev Area): SCRAM/gmake overhead
g e & 700 |
= 2 700 | — Ve
g 800 T 600 |
w
> 600 § =00 Gmake overhead remained
s’ 400 CRAM Overhead #00- same but SCRAM overhead
E E 300 was dramatically reduced
= make overhead =2 200]
o
10 yime(sec) 5 200 250 0 2 a 6 T"&:‘e(sec) 10 12 14 16
140 CMSSW (Full Release): SCRAM caches and build rules 45 CMSSW (Dev Area): SCRAM caches and build rules
= Makefile = Makefile
o o
= =2
s SCRAM caches o SCRAM caches
» < 600Kb B

< 30Kb

/ -\ 0.
R
V1.0(Old Build Rules) V1.0(Parallel build support) V2.0

SCRAM Versions

/ ——\
V1.0(Oid Build Rules) V1.0(Parallel build support) V2.0
SCRAM Versions

SCRAM V3

()
> Reduce code base: 5.5K instead of 13K

> User interface remained same
> For better tooling, used json format to store SCRAM'’s internal caches

GMAKE Overhead: Full CMSSW

- V2 == V3

SCRAM Build Overhead: Full CMSSW

- V2 == V3

150 150

100 100

RSS (MB)
RSS (MB)

50 50

% In order to reduce PERL dependency, in 2020, V3 was rewritten in PYTHON

10

Time (s)

18

Why SCRAM

s Easytouse
> Search available IB/releases: scram list
> Create developer area: scram -a el8_amd64_gcc12 project CMSSW _Version
> Build: scram build -j $(nproc)
> Setup runtime environment: eval 'scram runtime -sh|-csh’

> Reset runtime environment: eval 'scram unset -sh|-csh’
/7

% In 2018, we evaluated CMake but results were not promising
> Auto converted BuildFiles to CMakeLists.txt
> Converted SCRAM'’s tool-files to CMake’s Find<Tool>.cmake
> CMake configure step was 30+ times slow
m 30+ times more disk usage
m Generating a lot of small files per compilation unit
m Not good for using it on shared file-systems AFS/EOS or Ceph volumes

19

https://github.com/cms-sw/cmssw2cmake

SCRAM(V2) vs CMAKE: Configuration step
o oveem rbenes memaner RIS QRSN

SCRAM
CMAKE

14984
14832

2236
2233 664 500 910

3000

2000

150

RSS (MB)

1000

RSS(MB) vs Time(sec)

— SCRAM - CMAKE ——ATLAS

250

500 750 943 1000 1045

Time (s)

20

SCRAM(V2) vs CMAKE: Build time comparison

08 Cores 10284 10404
24 Cores 4855 4656
32 Cores 3698 3627

Build Time (sec) vs # of Parallel Jobs

12500 - SCRAM
- CMAKE

010D (1 W

GICODO
D
&,
(b} CPU Load
.g 750
H o o+ -
'5 S000
& BB EEEEE -
2500 | CPU/Network -
‘ Utilization

 #Parallel Jobs = #Cores 21

SCRAM(V3) vs CMAKE

% Comparing SCRAM performance with actual similar size CMake based

project (ATHENA) shows that SCRAM still out perforces CMAKE

> For comparison, | use Athena release/25.2.39 and CMSSW 15.0.X IB of 23rd JAN
> Tests were done on a 16 core Openstack VM on local SSD

> GCC 13, AimaLinux9

‘Source Code ‘Total Targets ‘Objects files ’Binary products ’Conﬁgure time(s) ‘Build time(min)‘Disk usage)MB)

CMSSW 41M 58K 18.9K 3600 4 85 60
ATHENA 3.3M 3TK 17.2K 2683 205 130 300

22

SCRAM(V3) vs CMAKE

2000

== CMSSW (SCRAM) == Athena (CMake)
SCRAM GMake

1500

1000

RSS(MB)

500

0 50 100 150 200

Time(sec)

23

Summary

O
L X4

CMS has a robust/scalable CI/CD system which has ensured high quality of
Integration build and releases

> |ntegration builds has the same quality of major release

> Helped us test and integrate latest versions of externals with in a day

o

¥ SCRAM, though over 27 years old, but has not shown any aging
> Easy to maintain: over 50% of PYTHON rewrite of V3 was done by a student

24

