

Operational experience at US HPCs with Harvester (ie fun with HPC's)

Doug Benjamin

Feb. 6, 2025

Acknowledgements

These slides represent the inputs and hard work of the following people –

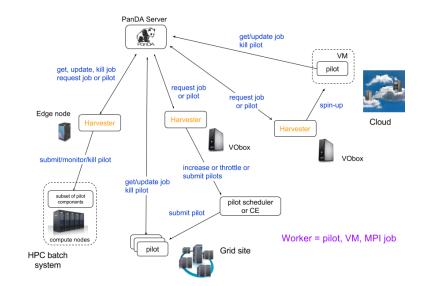
Lincoln Bryant

Rui Wang

Julien Esseiva

Xin Zhou (recent addition to the team)

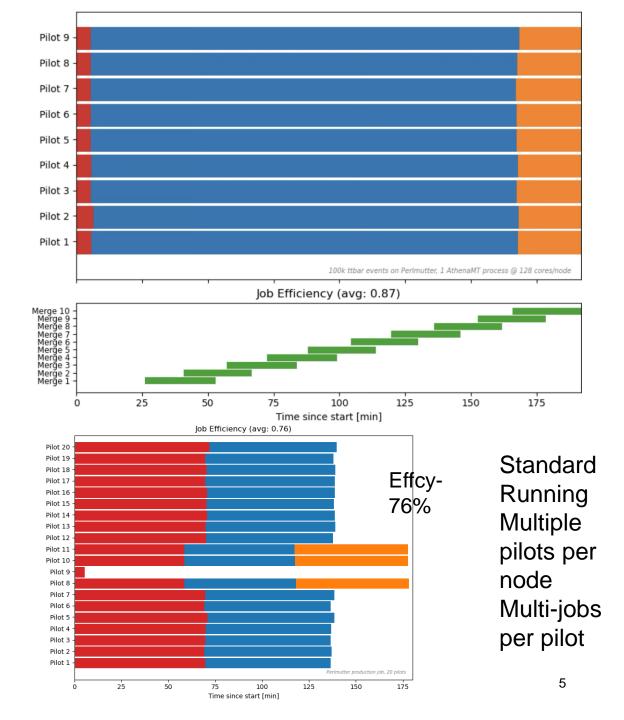
Doug B


- Credit is theirs and mistakes are mine

Harvester

- Harvester runs on Edge of the following HPC's in the US
 - TACC Frontera (Link to further details)
 - NERSC Perlmutter (<u>Link to Perlmutter</u> <u>details</u>)
 - On Perlmutter NERSC provides a workflow QOS. We run Harvester inside this workflow QOS
 - Special SLURM based cron mechanism
 - Run workflow job on a login node under common collaboration account (usatlas)

Link to Harvester documentation


Harvester details

- Tokens used for authentication in communication with PanDA servers (Xin Zho)
- Multiple queues at each HPC
 - Multicore, single core, test and gpu queues
 - Multiple pilots per node
 - Use specialty pilot wrappers at NERSC and TACC
- Slurm submitter plugin used to start work (initially written by DB)
 - Depending on specific queue submit Slurm jobs multi node for fixed period of time (for example - at NERSC 5-10 nodes for 12-24 hours)
- TACC needs a lower release of urlib compared to the default from harvester
- Data transfer between BNL (WLCG) and HPC's
 - TACC uses Globus (via Globus plugins written by DB) (<u>Globus Data Transfer</u>)
 - NERSC uses Rucio tools to upload and download data to BNL

Event Service

- Event Service event level simulation – developed by Julien Esseiva (LBNL)
 - Base on <u>Ray.IO</u>
 - One process handles communication w/ Harvester via filesystem and hands out events to simulate
 - One process process does the merge step
 - In these examples 3 hour Slurm job – 5 nodes

cvmfs / cvmfsExec

- cvmfsExec at TACC Information Courtesy Rui Wang
 - Leftover files from the terminated jobs when running cvmfsExec locally.
 - They are hard to clean by the new jobs, which causes failures.
 - Lincoln Bryant wrote a clean script to delete them, which had been launched in Slurm after the pilot job.
 - Run cvmfsExec inside the container helps isolate the cvmfs caching
 - container-in-container: outer container for cvmfsExec; inner container from pilot-wrapper based on releases
 - The path of the shared tmp filesystem changes on some nodes at TACC, which causes the mounting fail
 - TACC limits the max_user_namespace to 2000 in the middle of 2024, which prevents running Atlas container after cvmfsExec been executed
 - TACC is using self-extract cvmfsExec inside of centos7/el9 right now without the inner container
 - More stable against software changes
- cvmfs at NERSC
 - Older version 2.11.5
 - Issue with max number of single core pilots on node (currently limited to 32)
 - Need to set CVMFS_CACHE_REFCOUNT=true

Further enhancements / Improvements

- One Harvester on the Edge of a HPC does not scale
 - Need to move job submission to centralized Harvester
 - HPC's developing API for submitting jobs
 - NERSC two solutions
 - Superfacility API (Link to documentation)
 - Globus Compute (<u>Link to Documentation</u>)
 - Active project with HEP-CCE to make Globus Compute work for NERSC
 - NSF's HPC's (TACC Stampede3, SDSC Expanse, PSC Bridges-2)
 - Globus Compute
 - We have small allocation on SDSC Expanse and PSC Bridges-2 (50k cores each)
 - ALCF Globus Compute
- Rucio + Globus integration
 - Initial implementation Matt Snyder (BNL) and Doug Benjamin
 - HEP-CCE project w/ Doug B. to test implementation at scale
 - Going slowly need to jump start activity

Conclusions

- Harvester on the Edge has been highly successful for ATLAS
 - It allows us to use more restricted sites
 - Allowed for new simulation workflows (Event Service)
 - Many Harvester instances at each HPC not really scalable
 - Common API's exist for job submission (Globus Compute)
 - US DOE HPC's working towards common API
 - NSF HPC's have common API
 - Common tools exist for data motion (Globus Data Transfer)
 - Rucio + Globus exists but needs to be tested at scale
 - Need to focus on efficiency (more compute per allocation hour)

