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* | have far more questions than answers. ..

* Feedback most welcome!
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Struck by...

 goodness-of-fit * two-sample testing
* likelihood ratio test  optimal test

* exponential tilting

Parametrisation of the alternative hypothesis:
n(x|R;)

n(x|Hg, ;) = n(x|Ry) el ®)
n(x | RO) \ NN model
central value / E
SM (v=0) ||Model of systematic uncertainties effects
N n(x|R,) 2 20,2
P = Ry = o [B0v+ Biwne ]| €
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Won't talk about...

goodness-of-fit testing vs  two-sample testing




Try and talk about...

* (1933)
IX. On the Problem of the most Efficient Tests of Statistical Hypotheses.
By J. NevMAN, Nencki Institute, Soc. Sci. Lit. Varsoviensis, and Lecturer at the

Central College of Agriculture, Warsaw, and E. S. Prarson, Department of
Applied Statistics, University College, London.

- (1938)

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO
FOR TESTING COMPOSITE HYPOTHESES'

By S. S. WiLks




When is the LR optimal?

given sample x and significance level o

e scalar parameter of interest 6

Ho : po(x) vs Hy:py(x) most powerful test based on LR ﬁ;gg

Hyp:6<6g vs Hi:0>6 uniformly most powerful test' if LR is
monotone in T(x)

Hy:0=69 vs Hi:6+# 6, uniformly most powerful unbiased

test if T(x) has symmetric distribution

e 0 = (y,A), with v scalar parameter of interest

Hy:w=vyy vs Hi:y#y uniformly most powerful unbiased
similar test, e.g. natural exponential
family

TKarlin—Rubin theorem




A most enjoyable book

Springer Texts in Stafisties

E.L.Lehmann

Joseph P. Romano

@ Springer




Likelihood-based theory

given likelihood L(6; x) and MLE &

» UMP tests need be worked out on a case-by-case basis

» Wilks (1938) characterizes the asymptotic (large n)
distribution of log LR

2{logL(8; X) ~ logL(6: X) } ~ 22

* large- and small-sample neo-Fisherian theory based on
likelihood-type functions (score statistic, Wald test, profile
likelihood, ...)
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Exponential family

given 6 c @ cRY, T(y) € 7 € RY, h(-) > 0 and x(0) finite

* natural exponential family

p(y:6) = h(y)exp{T(y)" 6 —x(6)}
* obtained by embedding single fixed density po(y)

p(y; 0) o< po(y)e!t)'®

in a larger class by exponential tilting
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Many nice properties

p(y;0) = h(y)exp{t" (y)0 — k(6)}

*+ same support
* t(y) is minimal sufficient for 6
* x(0) is cumulant generating function

If 6 =(y,A)and t(y) = (t(y),(y)) = conditional
distribution of #; given T, =, only depends on .
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A second most enjoyable book

Textbooks

Exponential
Families in

Theory and
Practice

Bradley Efron
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And here we are...

n(x|H,,) = e)n(x|R)

+ exponential tilting on intensity (instead of density)
« fy(x) reconstructed by M(achine) L(earning)? to yield

log LRID) __2[

8 i) ~ 2| N ~NR - ) fw(x)]

x€D

+ which, given N(Hg,) and N(R) is monotone in ¥ ,p fs(x)

2not maximum likelihood!
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What are we working on

New Physics Learning Machine

+ When does it give rise to x? limiting distributions?
« What about the df's?

» (Can we connect it to generalized likelihood ratio testing?)

On Profile Likelihood

S. A. MURPHY and A. W. VAN DER VAART

We show that semiparametric profile likelihoods, where the nuisance parameter has been profiled out, behave like ordinary likeli-
hoods in that they have a quadratic expansion. In this expansion the score function and the Fisher information are replaced by the
efficient score function and efficient Fisher information. The expansion may be used, among others, to prove the asymptotic nor-
mality of the maximum likelihood estimator, to derive the asymptotic chi-squared distribution of the log-likelihood ratio statistic,
and to prove the consistency of the observed information as an estimator of the inverse of the asymptotic variance.

KEY WORDS: Least favorable submodel; Likelihood ratio statistic; Maximum likelihood; Nuisance parameter; Semiparametric
model; Standard error.
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What are we working on

C2ST

+ What if we train py(x) with R and p1(x) with Hy,?

 (Need strategies for post-selection inference?)

Splitting str for post tion i

5
By D. GARCIA RASINES® AnD G. A. YOUNG

Department of Mathematics, Imperial College London,
London SW7 2AZ, UK.
daniel. garcia-rasi i ial.ac.uk i i ial.ac.uk

SUMMARY

We consider the problem of providing valid inference for a selected parameter in a sparse
regression setting. It is well known that classical regression tools can be unreliable in this
context because of the bias generated in the selection step. Many approaches have been
proposed in recent years to ensure inferential validity. In this article we consider a simple
alternative to data splitting based on randomizing the response vector, which allows for
higher selection and inferential power than the former, and is applicable with an arbitrary
selection rule. We perform a theoretical and empirical comparison of the two methods and
derive a central limit theorem for the randomization approach. Our investigations show that
the gain in power can be substantial.
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Thank you!
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