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Ongoing work with. . .

Prof. Anthony C. Davison (EPFL)

Max Jeffrey LoConte (MSc Statistics @EPFL)
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Premise

• I have far more questions than answers. . .

• Feedback most welcome!
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Struck by. . .

• goodness-of-fit

• likelihood ratio test

• two-sample testing

• optimal test

• exponential tilting
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Won’t talk about. . .

goodness-of-fit testing vs two-sample testing
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Try and talk about. . .

• (1933)

• (1938)
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When is the LR optimal?

given sample x and significance level α

• scalar parameter of interest θ

H0 : p0(x) vs H1 : p1(x) most powerful test based on LR p1(x)
p0(x)

H0 : θ ≤ θ0 vs H1 : θ > θ0 uniformly most powerful test1 if LR is
monotone in T (x)

H0 : θ = θ0 vs H1 : θ ̸= θ0 uniformly most powerful unbiased
test if T (x) has symmetric distribution

• θ = (ψ,λ ), with ψ scalar parameter of interest

H0 : ψ = ψ0 vs H1 : ψ ̸= ψ0 uniformly most powerful unbiased
similar test, e.g. natural exponential
family

1Karlin–Rubin theorem
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A most enjoyable book
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Likelihood-based theory

given likelihood L(θ ;x) and MLE θ̂

• UMP tests need be worked out on a case-by-case basis

• Wilks (1938) characterizes the asymptotic (large n)
distribution of log LR

2
{
logL(θ̂ ;X )− logL(θ0;X )

}
∼ χ

2
ν

• large- and small-sample neo-Fisherian theory based on
likelihood-type functions (score statistic, Wald test, profile

likelihood, . . . )
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Exponential family

given θ ∈Θ ∈ Rd , T (y) ∈ T ∈ Rd , h(·)≥ 0 and κ(θ) finite

• natural exponential family

p(y ;θ) = h(y)exp{T (y)⊤θ −κ(θ)}

• obtained by embedding single fixed density p0(y)

p(y ;θ) ∝ p0(y)et(y)⊤θ

in a larger class by exponential tilting
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Many nice properties

p(y ;θ) = h(y)exp{t⊤(y)θ −κ(θ)}

• same support

• t(y) is minimal sufficient for θ

• κ(θ) is cumulant generating function

• If θ = (ψ,λ ) and t(y) = (t1(y), t2(y)) =⇒ conditional
distribution of t1 given T2 = t2 only depends on ψ.
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A second most enjoyable book
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And here we are. . .

• exponential tilting on intensity (instead of density)

• fw(x) reconstructed by M(achine) L(earning)2 to yield

• which, given N(Hŵ) and N(R) is monotone in ∑x∈D fŵ(x)

2not maximum likelihood!
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What are we working on

New Physics Learning Machine

• When does it give rise to χ2 limiting distributions?

• What about the df’s?

• (Can we connect it to generalized likelihood ratio testing?)
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What are we working on

C2ST

• What if we train p0(x) with R and p1(x) with Hw ?

• (Need strategies for post-selection inference?)
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Thank you!
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