Contribution ID: 18

Probing the coexistence of nuclear shapes through the first lifetime measurement of the 0^+_3 state in 120 Sn

Friday 14 March 2025 12:25 (30 minutes)

The semi-magic ${}^{120}_{50}$ Sn₇₀ lies in the neutron mid-shell among the other stable Sn isotopes, where shape coexistence was observed with the signature of deformed bands built on excited 0^+ states intruding into the yrast band that is built on the spherical ground state. However, the lifetime of the excited 0^+_3 state only has a lower limit of 6 ps in the literature, which prevents the study of transition strengths, and as a result, its structure is obscured.

The 0_3^+ lifetime was measured in the first thermal neutron capture experiment, ¹¹⁹Sn(n, γ^{many})¹²⁰Sn, at the Institut Laue-Langevin, where the world's highest-flux thermal neutron beam was delivered at 10⁸ n/cm²/s at the target position on an isotopically enriched ¹¹⁹Sn target. Low-spin states in ¹²⁰Sn were populated up to the neutron separation energy $S_n = 9.1$ MeV, and the decaying gamma-ray cascades were detected with the Fission Product Prompt Gamma-ray Spectrometer (FIPPS) comprised of eight Compton-suppressed HPGe clovers coupled to an array of 15 LaBr₃ scintillation detectors. The LaBr₃ scintillators, which were used for gamma-ray detection and lifetime measurement using the Generalized Centroid Difference (GCD) method, have fast timing responses and are ideal for extracting lifetimes between 10 and a few hundred ps.

In total, there are 4×10^9 counts in the $\gamma \gamma \gamma$ cube where two LaBr₃ events were in coincidence with one HPGe.

Lifetime measurement for the 0_3^+ state in 120 Sn using the GCD technique will be presented with nuclear structure interpretations from realistic shell-model calculations. Additional lifetimes will also be measured where the $\gamma\gamma\gamma$ cascade's statistics permit. Analysis is also underway for a similar neutron-capture experiment populating low-spin excited states in 118 Sn.

Authors: GARGANO, Angela; MICHELAGNOLI, Caterina (Institut Laue-Langevin); Prof. ANDREOIU, Corina (Simon Fraser University); PETRACHE, Costel (Université Paris-Saclay CNRS/IN2P3); WU, Frank (Simon Fraser University); RÉGIS, Jean-Marc (IKP); SPAGNOLETTI, Pietro Nicola (University of Liverpool (GB)); KARAY-ONCHEV, Vasil (ANL)

Presenter: WU, Frank (Simon Fraser University)

Session Classification: Day 3

Track Classification: Nuclear structure: Nuclear structure from fast-timing measurements