

Spectrometer Magnet for SHiP Experiment Status

A. Ballarino³, <u>L. Baudin³</u>, P. Borges de Sousa¹, N. Bourcey³, A. Devred², D. Duarte Ramos³, S. Izquierdo-Bermudez³, T. Koettig¹, F. Mangiarotti³, A. Milanese³, M. Pentella³, C. Petrone³, O. Pirotte¹, F. Savary³, and G. Willering³

¹CERN/TE-CRG, ²CERN/TE-HDO, ³CERN/TE-MSC

7th March 2024

22nd EP Magnet Working Group Meeting

Presentation outlook

Proposal:

Design of the spectrometer magnet of SHiP hidden sector Using MgB₂ sub-cables from HL-LHC WP6a, Operated in gaseous helium (GHe) at 20 K

Demonstrator: Energy-Efficient Superferric Dipole Program

Achievements and results of tests already performed

On-going work and future activities

Conceptual design of SHiP superconductive spectrometer magnet

Already covered in a <u>presentation</u> during the 15th EP Magnet Working Group Meeting by A. Devred on the 1st December 2023

Spectrometer magnet requirements Initial design proposals

Design requirements:

- aperture: 4 x 6 m²;
- bending strength: 0.6-0.7 T.m;
- Integration of vacuum chamber (can be simplified with He option).

Initial design proposals:

- Initial design developed by P. Wertelaers and A. Perez in 2019, relying on normal conducting magnets
 - 1.2 MW power consumption!
- First study of superconducting options by D. Tommasini and H. Bajas in 2020 (incl., Nb–Ti, Nb₃Sn, MgB₂ and ReBCO)
 - all options feasible; choice to be made on cooling type, magnet protection and conductor availability.

SHiP spectrometer magnet

- Initial studies with aperture 5x10m² (now 4x6m²)
 - H. Bajas, D. Tommasini, EDMS 2440157 (21 April 2020)
 - P. Wertelaers, CERN-SHiP-INT-2019-008
- Requirements:
 - Physics aperture 4 x 6 m²
 - Bending field 0.6-0.7 Tm , nominal on axis ~0.15T
 - Integration of vacuum chamber

	-				52	22				
+	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	Ô	0	0
	0	0	0	0	0	0	0	0	0	0

Coil's cross-section Aluminium hollow conductor

- Resistive baseline option 1.2 MW
- What about superconductive with coil of same dimensions?

TE-MSC seminar – 23 March 2023 Courtesy of R. Jacobsson (CERN/TE-MSC)

Motivations to use MgB₂ cable developed for HL-LHC WP6a

Characteristics of spectrometer magnets which motivate the use of MgB₂ cables :

- Spectrometer magnet calls for a large number of Ampere-turns to produce a low field in a large aperture.;
- DC operation, dominated by static losses, large electrical consumption of the resistive option;
- Coil winding allowing large radii of curvature compatible with the use of MgB₂;
- Preference for a cable that can be produced in long lengths;
 - \blacktriangleright Niche application for MgB₂ cables cooled by GHe at 20 K.

Courtesy of A. Ballarino (CERN TE-MSC)

Such cables have become available thanks to the superconducting links developed within the framework of HL-LHC Work Package 6a (cold powering system). Development of dedicated ReBCO current leads also successful.

MgB₂ wire for HL-LHC superconducting link (over 1000 km produced)

MgB₂ cable made from 18 MgB₂ strands twisted around braided copper core (available in kilometric unit length)

Multi-stage MgB₂ cable for HL-LHC superconducting link (7 out of 10 unit lengths produced)

Full-size HL-LHC superconducting link prototype system successfully tested in March 2024 (transferred up to ~ 94 kA in DC mode)

Energy-Efficient Superferric Dipole: Program Overview

Objective:

Explore the potential of a superferric magnet design using MgB₂ subcables from HL-LHC WP6a, operated in gaseous helium (GHe) at 20 K.

First Step:

Develop a proof-of-principle demonstrator with scalable design and assembly processes for large, iron-dominated magnets in physics experiments.

The EESD program was launched by CERN/TE at the beginning of 2023, having the SHiP spectrometer (or similar applications) in mind.

Testing Phases for Proof-of-Principle Demonstrator:

- 1) test in a cryogenic test station with LHe at 4.5 K;
- 2) test in a cryogenic test station with GHe at 20- 30 K;
- 3) test with warm iron and coil at 20 K in a dedicated cryostat.

Electromagnetic design:

Main design concepts/parameters are:

- H-type iron yoke;
- Single, double-pancake, racetrack-type coil;
- Pole gap: 180 x 62 mm;
- Magnetic length: 1.0 m;
- Target central field: 1.8–2.0 T at 5 kA and 4.5 T (coil peak field ~ 1.1 T).

Demonstrator successfully tested in LHe at 4.5 K in Q2 2023

Energy-Efficient Superferric Dipole: Phase 1

Technical specifications:

- Minimum Cable Bending Radius:
 - Set to 300 mm (lower limit under investigation)
- Double-Pancake Coil:
 - Wound without tension, with the cable positioned in half-circular grooves of aluminium alloy (grade 6082) formers (one cable per groove)
- Coil former:
 - Grooves of formers are precisely machined for a tight fit with insulated cable, supporting it during powering (similar to ITER TF radial plates)

Test results:

- Phase 1: Successfully carried out in liquid helium (LHe) at 4.5 K during Summer 2023.
 - Performance: Powered up to 5 kA without quench or V-I issues.
 - Thermal Cycle: Subjected to a thermal cycle to room temperature with no impact.
 - Magnetic Measurements: Performed with a rotating coil magnetometer, consistent with FE simulations. Measured Central Field: 1.95 T at 5 kA and 4.5 K

Assembly of proof-of-principle EESD demonstrator Courtesy of N. Bourcey and A. Milanese (CERN/TE-MSC)

EESD powering history during first test cycle at 4.5 K (Phase 1) Courtesy of F. Mangiarotti CERN/TE-MSC) ntegral dipole field load line Courtesy of C. Petrone (CERN/TE-MSC)

A. Devred, et al., <u>"Proof-of-Principle of an Energy-Efficient, Iron-Dominated</u> <u>Electromagnet for Physics Experiments," IEEE Trans. Appl. Supercond., Vol. 34 No.</u> <u>5 (2024).</u>

Energy-Efficient Superferric Dipole: Phase 2

Test Results:

- Phase 2: Successfully carried out in gaseous helium (GHe), in January 2024.
 - Technical challenge: Adaptation of the HFM test station to manage a stable cryogenic operation
 - Initial Cooling: Cooled down to 4.5 K to reestablish previously achieved performances
 - Incremental Warming and Powering:
 - Warmed up to 20 K, 25 K, and 30 K.
 - Successfully powered up to:
 - 4 kA at 20 K
 - 3 kA at 25 K
 - 2 kA at 30 K
 - No quench or V-I observed.
 - Subsequent Testing:
 - Quench tests conducted at higher temperatures (behavior as expected).
 - AC loss measurements performed (not for SHiP applications).

Reassembly of EESD demonstrator for Phase 2 Courtesy of N. Bourcey and A. Milanese (CERN/TE-MSC)

Energy-Efficient Superferric Dipole: Phase 3 Indirect cooling of the coils at 20 K

Objective:

To cool superconductive coils efficiently by circulating Gaseous Helium (GHe) through capillaries within a dedicated cryostat keeping the yoke warm

Energy-Efficient Superferric Dipole: Phase 3 Indirect cooling of the coils at 20 K

Update of the electromagnetic design and mechanical simulations:

Main design concepts/parameters are:

- H-type iron yoke;
- Double-pancake, racetrack-type coils;
- Pole gap: 180 x 62 mm;
- Magnetic length: 1.0 m;
- Target central field: 1.9 T at 5 kA and 20 K.
- 2 symmetric Racetrack-type coils :
 - Optimization of cryostat design
 - Lorentz loads transfer
 - Decrease of the peak field

Analysis are done MSC Technical Note EDMS 3212397

Magnet load lines based on results of 3D opera simulations with reference MgB₂ cable data at 4.5 K, 20 K and 25 K

07/03/2025

Energy-Efficient Superferric Dipole: Phase 3 Indirect cooling of the coils at 20 K

Mechanical design:

The two coils will be mounted in a common support structure and housed in a common cryostat.

Design of the coils, cooling formers, cryostat, coldmass, supporting system...

EESD Phase 3

Presentation outlook

Proposal:

Design of a superferric magnet Using MgB₂ sub-cables from HL-LHC WP6a, Operated in gaseous helium (GHe) at 20 K

Demonstrator: Energy-Efficient Superferric Dipole Program

- Achievements and results of tests already performed
- On-going work and future activities

Validation of the technology by Q4 2025:

- use of MgB₂ cable developed for WP6a in a magnet
- winding of MgB₂ cable in grooves machined in a radial plate
- Implementation of indirect cooling thanks to GHe at 20 K

Conceptual design of SHiP superconductive spectrometer magnet

Conceptual design of the SHiP Spectrometer Magnet

Main design concepts/parameters of the electromagnetic design are:

- Superferic = iron dominated magnet;
- H-type iron yoke;
- 2 symmetric coils;
- Double-pancake, racetrack-type coils = flat coils;
- Pole gap: 6000 x 4000 mm;
- Target central field: 0.15 T at 3 kA and 20 K.

Requirements for physics point of view :

- Integrated field strength;
- Field homogeneity;
- Time stability.

Conceptual design of the magnet has started and must include:

- Electromagnetic design;
- Conceptual and mechanical design of the coil's structure and the cryostat;
- Cooling architecture;
- Current leads, "cryogenics satellite" and superconducting link between the two coils;
- Assembly procedure;
- Technical infrastructure interfaces...

CERN

Preliminary design: superconductor, coils and cryostat

MgB₂ cable made from 18 MgB₂ strands twisted around braided copper kilometric unit length)

Courtesy of A. Ballarino (CERN TE-MSC)

MgB₂ wire for HL-LHC superconducting link

(over 1000 km produced)

core (available in

Schematic cross section of the coil and the cryostat

Superconductor:

Use of the cable available thanks to the superconducting links developed within the framework of HL-LHC Work Package 6a (cold powering system):

- Already tested and characterised included in the full-size HL-LHC superconducting link prototype system successfully tested in March 2024 (transferred up to ~94 kA in DC mode);
- Stable, "self-protected";
- Can be produced in long unit lengths.

Nominal current decreased from 4000 A to 3000 A for more margin on cable operation and on the heat load of the current leads

Coil:

- Winding in grooves machined in a radial plate;
- Cooled by indirect cooling.

Cryostat:

- One coil per cryostat (different to EESD/FCM);
- Thermal shield and vacuum vessel like "rigid" cryostat (similar to EESD/FCM).

Inputs for electromagnetic simulations Static heat loads computations

Extract from former bottom plate drawing CRNMRDEESD0005

Preliminary electromagnetic design

Magnetic simulations and output on baseline geometry

Benchmark Opera/Roxie done

Integrated field on the longitudinal direction on the top right quadrant of the spectrometer magnet aperture Electromechanical design V01

B coil peak

- G- B gap

- 20 K

25 K

Ongoing work on the electromechanical design of the spectrometer magnet:

- Iteration process for field optimisation on going
- First estimation of the coil's characteristics
- First estimation of the electromechanical forces

CERN

22nd EP Magnet Working Group Meeting / SHiP Spectrometer Magnet / L.Baudin et al.

16

Qat 18 K Qat 80 K Qat 50 K

[W]

100

60

[W]

10

2

0.54

Source¹

Conduction through support

Thermal radiation

Splice resistance 2

Cooling architecture by cryocoolers

Cryogenic study of novel cooling schemes: Updated values

Two separate circuits: Current leads & magnet Highly efficient heat exchangers with fluid circulation loop cooling are being developed to cool down the current leads

Requirements for temperature of the magnet coldmass: 18 K (to keep a margin on the temperature of the cable expecting a gradient on such large coil)

Technical infrastructures

Preliminary consideration for assembly, transport and integration in ECN3

<u>Status of 19/02/2025</u> Courtesy of HI-ECN3 WP4 – SHiP Experiment C. Duran Gutierrez, R. Rinaldesi (EN-HE)</u>

07/03/2025

Construction strategy – first thoughts

Technology and Practical Feasibility

We are confident in our ability to manufacture the coil and magnet, benefiting from the knowledge, expertise, and support from CERN's teams (MSC, EP experts, MME, Transport).

Participation from industry in the engineering design phase, including development of dedicated tooling, can be an option

Key Next Steps: Identify a suitable location for:

- Coil winding
- Cryostat assembly
- Test bench installation
- · Preassembly of the full-scale system at the surface

Qualification campaign and production of the full-scale will be done at CERN

Winding machine operated in building 181, by TE/MSC-NCM, for the manufacturing of the resistive coils of the SPS MBB magnets (coil are 6.5 m long)

Tentative timeline

Key milestones:

- Test of the prototype coil: Q4 2028
- Test of the series coils Q4 2030
- System commissioning in the ECN3 cavern: Q3 2031

No time to lose: engineering design to start spring 2025 (i.e., main parameters must be fixed Q2 2025)

High co activities with HL-LHC installation during LS3 for most of the teams involved in SHiP project

													_	_			
			2023	2024	T	2025	20	26	2027	2028	2029	2030	20	31	2032	2033	2034
			Q1 Q2 Q3 Q4	1 Q1 Q2 Q3 Q	24 Q1	Q2 Q3 Q	4 Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3	Q4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q	Q4 Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q	4 Q1 Q2 Q3 Q4
		EESD: Phase 1 LHe at 4.5 K	0		_									\square			
		EESD: Phase 2 GHe at 20 K		0									_	\vdash			
	4.000	EESD: Phase 3 GHe at 20 K in cryostat					0							\vdash			
	1. K&D and Qualification	EESD: Pridse 4a cooling by cryocoolers/croyfan		Tada	· -			0	•					++			
	Quanications	Coll technology development		ioda	y -				0					++			+ $+$ $+$ $+$
		Bonding mechanism			1									++			
		Minimum bending radius												++			
ł		Procurement & qualification for the prototype (28 km strands)												\vdash			┼─┼─┼─┤
		Insulation prototype cable UI												\vdash			
	2. Conductor	Procurement & qualification for the series (134 km strands)															
		Insulation series cable Uls															
		3.1 Design			٥												
		3.1.1 Conceptual design															
		3.1.2 Detailed design															
		3.2 Coil pack															
		3.2.1 Manufacturing design															
		3.2.2 Procurement 1st set															
		3.2.3 Procurement 2 sets															
		3.2.4 Winding 1st coil (prototype)			\perp					>				\square			
		3.2.5 Winding series coils (2 sets)															
		3.3 Cold mass						_					_				
		3.3.1 Manufacturing design			+												+ $+$ $+$ $+$
		3.3.2 Procurement 1st set (prototype)			-									\square			+ $+$ $+$ $+$
		3.3.3 Procurement 2 sets			+								_				+ $+$ $+$ $+$
		3.3.4 Assembly 1st cold mass (prototype)			+									\vdash			
		3.3.5 Assembly series cold mass (2 sets)			-								_				
		3.4 TOKE			1		-						-				
		3.4.1 Manuacturing design			+									++			+
		3.4.2 Procurement			+									++			+ $+$ $+$
	3 Magnet	3.4.3 Toke pre-assembly at the surface			+									\vdash			
	o. magnet	3.5 System			1												
		3.5.1 Full system assembly					1										
		3.6 Tooling - Coil Pack															
		3.5.1 Winding tooling design															
		3.5.2 Winding tooling procurement			+									++			
		3.5.2 Coil handling tooling design			+									++			
SHIP		3.5.4 Coil handling tooling procurement			+		1							++			
		3.7 Tooling - Cold mass			+												
		3.6.1 Cold mass assembly tooling design															
		3.6.2 Cold mass handling tooling design															
		3.6.3 Cold mass assembly tooling procurement			+												
		3.6.4 Cold mass handling tooling procurement			+												
		3.8 Tooling - Yoke															
		3.7.1 Yoke assembly tooling design															
		3.7.2 Yoke assembly tooling procurement															
		3.9 Infrastructure															
		3.7.1 Coil fabricaton (mainly winding machine)															
		3.7.2 Assembly hall - Prototype															
		3.7.3 Assembly hall - Full system															
		Manufacturing design															
	4. Cryostat	Procurement															
	. ,	System available for prototype test			-					0							
		System available for series test		+++	_	┢┷┷				┢┼┼┥┩		0		\vdash			
		Design and procurement			+								_	\vdash			+
	o. Cryogenics	System available for prototype test			+					0				\vdash			
		System available for series test			+							V		\vdash			╉╌┼╾┼╾╉
	6 Current loads	System available for prototype test			+									++			+ $+$ $+$
	o. Guirentieads	System available for prototype teSt System available for series test			+					V		0		++			+ $+$ $+$ $+$
	7 Electrical	Design and procurement			+							~		\vdash			+
	circuit and	System available for prototype test			+					0			-	\vdash			
	protection	System available for series test			+							0					
	8. magnetic	Design and procurement			+									\vdash			
	measurements /	System available for prototype test			+					0				\vdash			
	field mapping	System available for series test			+								0				
netu		Test of the prototype			1						0						
	Tert	Test 1st cryostated unit										0					
	Test	Test 2nd cryostated unit											0				
		Full system test in surface															
		SHiP Spectrometer magnet CDR					0										
		SHiP Experiment TDR							0								
	Project	SHiP Spectrometer magnet TDR								0							
	(presented in 30th	Work in ECN for SHiP installation															
	Col. Meeting)	Spectro. Magnet system commisionning in ECN3 cavern												0			
		Facility commissioning													0		
		Facility operation															LS4
												L					

Conclusion on SHiP spectrometer magnet

Proposal:

Use the MgB₂ cable, originally developed for superconducting links in the HL-LHC Work Package 6a, to design the large aperture SHiP hidden sector spectrometer magnet, aiming to reduce electrical consumption.

Demonstrator achievements:

- 1st successful demonstration of an electromagnet based relying on a MgB₂ cable: no training at 20-30 K, no performances change after quench test.
- Quench detection and protection: the demonstrator enables data collection. (looking promising thanks to the presence of Monel in MgB₂ strands, which speeds up quench propagation, and of a large Cu amount in cable core).
- Next Step: Test indirect cooling using GHe circulating in capillaries.

Ongoing work on SHiP spectrometer magnet:

- Conceptual Design of SHiP hidden sector spectrometer magnet in progress: First iteration of electromagnetic design under verification by SHiP teams (Physics & technical infrastructures)
- Future Focus:

Open technical points are identified (cooling architecture, current leads,...)

They could be addressed through a dedicated R&D program and/or by constructing a reduced-scale prototype, potentially usable for other applications.

Overall procurement strategy or inhouse production to be defined shortly

Ambitious timeline

Full-scale magnet commissioning Q3 2031

home.cern

Comparison with resistive option

Initial cost vs operation cost

Component	Cost of MgB ₂ option [kCHF]	Cost of Normal conductive
Conductor	908	125 (for aluminium)
Coil pack	660	
Vacuum vessel	1200	
Cryo-satelitte	515	
Quench protection	200	
Cooling		100
Power convertor		+100
Initial extra-cost	3483	425
Electricity consumption	40	650
Cost of electricity for one month operation (140CHF/MWh)	4	66

The initial extra cost of the Superconducting MgB_2 option is compensated after 50 months of operation

Timeline for EESD demonstrator Phase 3

Feb. 2024 Start of the Phase 3 mechanical design	Sep. 2024 Assy. proced	ure	March 2025 3D CAD mechanical design ready • Interconnection area	Mai 2025 2D drawings • Tooling	August/Sept. 2 Winding Magnet assem	2025 Ibly
	2024				2025	$ \rightarrow $
	Aug. 2024 3D CAD mechanical design ready • Coil • Coldmass • Thermal shield • Vacuum vessel	Oct. 2024 2D drawings • Coil • Coldmass • Thermal shield • Vacuum vessel Start of procurement	April 2025 3D CAD mech design ready Today [•] ^{Tooling}	July 20 nanical Recept of com	25 Nov ion and control Inte ponents Cor Tes	2. 2025 rconnection assembly nection to Cluster G t of EESD phase 3

- use of MgB₂ cable developed for WP6a
- winding in grooves machined in a radial plate
 - cooled by indirect cooling

Procurement of MgB₂ strands

Estimation of the cable and strands needs for the project based on conceptual electromagnetic design V01:

Hypothesis for the calculation of the cable unit length:

- Estimation of cable length for one coil based on current 3D magnetic simulations: 2200 m
- 2 +1 spare coils
- 1 double pancake (1/3 of coil) for prototyping margin
- Must include winding margin
- + 10% twist pitch
- + 10% losses during cable production
- 18 strands per cable

MgB₂ wire for HL-LHC superconducting link (over 1000 km produced)

MgB₂ cable made from 18 MgB₂ strands twisted around braided copper core (available in kilometric unit length)

Courtesy of A. Ballarino (CERN TE-MSC)

Simplified cross section of the coil and the cryostat

The 28 km of strand has been ordered

Unit length one coil for one double pancake	750 m
Number of double pancake :	
Three coils (2+1) x 3 + 1 prototype	10
+ 10% twist pitch	1.1
+ 10% cable prod. losses	1.1
18 strands/cable	18
Total	162 km

Preliminary magnetic simulations

Field optimization

Parametric 2D simulations

 Ongoing work on the electromechanical design of the full-scale magnet:

- Identification of the optimisation challenges
- First estimation of the coil's characteristics
- First estimation of the electromechanical forces

Benchmark Opera/Roxie

Simulations on a reference geometry

					on l	on R=1500 mm							
	ВҮ0 [T]	Bmod Coil [T]	Bmod Iron max [T]	Bmod Iron Z0 [T]	b3	b5	b7	Bending Field +/- 7.5m [T.m]	Bending Field +/- 2.5m [T.m]	E,stored energy [MJ]	BY Y0000 [T]	BY Y0500 [T]	BY Y1000 [T]
Roxie 3D													
Roxie 2D	0.1667	0.982	N/A	1.949	575	-223	25	N/A	N/A	N/A			
Opera 3D	-0.1539	0.9889	2.9396	1.9455	-1071	-140	-21	0.8428	0.6346	2.76	-0.1299	-0.1364	-0.156
Opera 2D	-0.1674	1.0087	N/A	2.3443	-575	-223	-24	N/A	N/A	N/A	-0.1407	-0.1452	-0.1595

Courtesy of S. Izquierdo Bermudez

(CERN TE-MSC)

First consideration on cryostat design and coil supporting system

Total repulsive force: ~1300 kN/coil

Large coil dimensions

- Large thermal contractions, in two directions of a plan (thermal contraction: 24 mm aluminium coil's former compared to the RT yoke in vertical direction)
- Large electromagnetic forces

To minimise heat load we can play with:

- height of the columns, with influence on the overall size of the cryostat;
- choice of material for best ratio of allowable stress to thermal conductivity. :

	∫ <u>kdT</u> 20-80 K [W/m]	∫ <u>kdT</u> 80-300 K [W/m]	Strength [MPa]	Strength/ ∫ <u>kdT</u> 20-80 K [MPa/W/m]
Stainless steel 316	331	2680	Compression or tensile, yield: 205	<1
Titanium	205	1370	Compression or tensile, yield: 830	4
Glass fibre reinforced epoxy	19	146	G10 tensile, ultimate: 310 G10 compression, ultimate: 450 Moulded parts tensile, ultimate : ~300	16 23

Disclaimer: other loads to be considered : weight; transport&handling accelerations; unbalanced electromagnetic forces due to misalignment; seismic loads...

Courtesy of D. Duarte Ramos (CERN TE-MSC)

Heat load at	G10 tubes	Stainless steel
20 K level [W]	6	110
80 K level [W]	95	1700

Ongoing work on cryostat design First estimation of the :

- space allocation for the supporting system;
- static heat load due to the supporting system of the coil.

Technology development

Assessment of the thermal contact resistance between the isolated MgB₂ cable and the radial plate :

- Mechanical adjustment:
 - As build in EESD in phase 3: mechanical adjustment relying on differential thermal contraction and mechanical tolerances;
 - Addition of a counter former made of aluminum to increase of contact surface and contact pressure.
- Impregnation? Wet winding? discussions with Roland Piccin (polymer lab, CERN TE-MSC)
 - Impregnation?
 - Putty (curing in 1 day):
 - "green paste" ITER-like for the installation of TF coil case cooling pipes
 - Custom made charged epoxy for adjustment of viscosity and thermal contraction coefficient: boron-nitride (if no radiations), aluminum-nitride
 - Vacuum grease: Apiezon® like
- Isolating material for cable:
 - 2 x 55 um Kapton with tension (as build in EESD);
 - glued Kapton as LHC cable.

07/03/2025

Q2 2025