

UNIVERSITY OF HIGH ACCELERATOR-DRIVEN BIRMINGHAM FLUX NEUTRON FACILITY FACILITY

University neutrons: the high-flux accelerator facility at Birmingham

Professor Carl Wheldon School of Physics and Astronomy University of Birmingham

And the owner of the owner owner owner owner owner owner o

IMAGING CENTRE

POSITRON

UNIVERSITY OF

BIRMINGHAM

Overview

- The facility: why and for what?
- Project practicalities: building a compact neutron facility
- Technologies
- Research

High Flux Accelerator-Driven Neutrons

High Flux Accelerator-Driven Neutron Facility (HF-ADNeF) Commissioned 7th December 2023

Engineering and Physical Sciences Research Council

National Nuclear User Facility

Why an accelerator-based neutron source?

Birmingham's neutron source – history

RDI 3MV Dynamitron (1970 – 2023)

- A low energy (**vertical**) accelerator, for protons up to 3 MeV.
- A high current machine (<3 mA) for materials damage studies and Boron Neutron Capture Therapy (BNCT) research.
- High neutron fluxes can be produced from protons on a lithium target.
- Machine was removed on 12th June 2023. See photo opposite (serendipitously by the same company who craned it in in the 70s).
- Lithium-copper bonding technique developed at Birmingham for high-power neutron targets^a.

^aLithium target reference (B'ham): Brown, Scott, Penetrating Radiation Systems & Applications, **4142** (2000); Phoenix, et al., Applied Radiation and Isotopes, **106** (2015), 49.

Boron Neutron Capture Therapy (BNCT)

В

- For difficult to treat head and neck tumours and metastatic cancers.
- Boron containing compound is given to a patient. After ~1 day healthy cells have released the boron whereas the cancer cells have retained it.
- A single neutron dose is then given

Image: Qi Dai, QiYao Yang, Xiaoyan Bao, Jiejian Chen, Min Han and Qichun Wei, Mol. Pharmaceutics 2022, **19**, 2, 363–377

Project practicalities

- Built on time and under budget during pandemic
- Project cost (today) ~ €15M (85% UK Science Council, 15% University)

- New bunker: 1-year build time
- Machine install and commissioning: 1 yr
- Lower shielding costs by building underground

Facility layout

Helsinki Centre for cancer therapy

2025/02/06 STFC Acc. Inst. Seminar

Image: Physics World, 27 Aug 2021, IOP publishing.

High Flux Accelerator-Driven Neutron Facility

The electrostatic accelerator is designed for beams of protons and deuterons and currents of <50 mA, nominally at up to 2.6 MeV, but 2.8 MeV is the maximum.

Neutron yield figure adapted from figure 2 of J.C. Yanch *et al.*, Medical Physics **19** 709 (1992).

Project technologies in numbers

Titanium vacuum vessel withstands high intensity neutron beam

- High current ion beams: 117 kW on target (2.6 MeV protons at 45 mA); 45 mA → 2.8x10¹⁷ protons/sec.
- Up to **1x10¹² neutrons per cm²** per second (yield >1x10¹³ neutrons per second).
 - Target comprises 16 lithiumcoated copper petals around 1 m diameter target wheel rotating at 600 rpm.
- **300 litres** of cooling water per minute through copper petals.
 - 40% electrical efficiency to beam.
- Target life over 1000 hours.

Neutron production

Neutron production – target petals

Proton beam current 30-50 mA at 2.6 MeV. Target lifetime > 1000 hrs. Copper petals are main expense. Micro-channel cooling – 50% water by area.

Target change robot – TWEak

Thermal neutrons from graphite moderator under target structure.

TWEak Target Wheel Exchanger aka TWEAK

Changes targets faster than you can say "buncha munchy crunchy carrots".

1 / V

Activity per target (16 petals) can reach 6 Tbq (⁷Be).

2025/02/06 STFC Acc. Inst. Seminar

13/22

<u>UK neutron sources – accelerator based</u>

Source	Production method	Details	Intensity
National Physical Laboratory (NPL)	3.5 MV Van de Graaff	p, d, <80 μA. Targets Sc, LiF, D, T (air cooled)	E.g. 13-19 MeV (T) 0.05-0.63 MeV (Li) 2x10 ⁷ /s/cm ² Mono energetic
AWE, Aldermaston	Electrostatic 350 kV	d ions, <15 mA. Target tritium (TBq) (water cooled)	14 MeV <2.5x10 ¹¹ /s
Rutherford Appleton Laboratory	ISIS – Spallation (RFQ+Linac+Synchrotron) 800 MeV protons at <200 μA 50 Hz. 160 kW, W target+Ta clad 30 beam lines. Two examples given used for irradiation.	E.g. ChipIR: White neutron source with neutron energies up to 800 MeV	1x10 ⁷ /s/cm ² [10-800 MeV, 5.8x10 ⁶ /s/cm ²]
		E.g. EMMA: Thermal neutrons – water moderated. 25 meV Maxwell- Boltzmann + epithermal tail	<2x10 ⁶ /s/cm ² pulsed at 40 Hz
	NILE (DC beams but pulsing available)	DT source	14 MeV <1x10 ⁸ /s/cm ²
		DD source	2.5 MeV <1x10 ⁵ /s/cm ²
High flux Accelerator- Driven Neutron Facility, Birmingham	2.6 MV electrostatic	p, d, 50 mA. Target Li (water cooled)	0.1-1 MeV <1x10 ¹² /s/cm ² (p)
2025/02/06 STFC Acc. Inst. Seminar			

HF-ADNeF — research/impact opportunities

- Nuclear materials research under neutron irradiation [fission/fusion communities including associated industries, e.g. CCFE, First-light fusion, NNL etc.].
- * Nuclear fission and fusion data, e.g. neutron capture cross section data [fission/fusion and nuclear physics communities].
- Nuclear waste management understanding the long term effects of radiation on material characteristics [nuclear industry/NDA/NNL, nucl. eng. academics].
- High power target development [other facilities inc. medical and fusion devices, ourselves (future liquid lithium target) and the fusion community (fuel breeding)].
- Medical physics from radiobiology to boron neutron capture therapy developments, e.g. for BNCT. Medical isotope cross sections measurements and production.
- Industrial and space research on the effect of radiation [detectors and space research communities extension of cyclotron work in these areas].
- Nuclear Metrology calibrated and controllable neutron source availability and testing new radiation monitoring systems [neutron source standards and characterisation, e.g. the National Physical Laboratory].
- Nuclear (astro)physics the neutron spectrum is close to that in stellar environments [nuclear physics/nuclear astrophysics communities — feasibility grant (STFC)].

Towards nuclear astrophysics measurements at HF-ADNeF

At 1.912 MeV proton energy (threshold 1.88 MeV), the neutron spectrum is a close approximation to a Maxwell-Boltzmann distribution at lower neutron energies.

Towards nuclear astrophysics measurements at HF-ADNeF

At 1.912 MeV proton energy (threshold 1.88 MeV), the neutron spectrum is a close approximation to a Maxwell-Boltzmann distribution at lower neutron energies.

Currently limited by scattering through 4 mm-thick Ti wall

Figure from Jack Bishop

Maximum energy measurements

- Running two measurements, one at Ep = 2.6 MeV and one at Ep = 2.5 MeV.
- Difference between the two gives pseudo-Gaussian around En = 0.8 MeV.

High intensity available allows for measurement of small samples with cross sections down to µb within few hours of beam with good statistics

18/22

Deuteron beams project

Moving to deuteron beam allows for both:

- Higher total flux (2-5 times higher)
- Fast neutrons up to 17 MeV
- Additional contribution from deuteron breakup/excited states
- Current work starting to model
 d + ⁷Li neutron production
- Shielding upgrades required
- d(d,n) along the beamline
- More intense, higher E neutrons

Conclusions

Accelerator-based neutron sources are **versatile** and **small** and **quick to build** ~ 2 years. Could be Stepping stone to research reactor. Neutrons up to 17 MeV for a wide range of applications are readily available.

Collaborators & acknowledgements

HF-ADNeF team (Physics): Martin Freer (PI), <mark>Ben Phoenix</mark>, <mark>Jack Bishop</mark>, Tendai Makuwatsine, Stuart Green, Tzany Kokalova. Funded through the NNUF programme via EPSRC and University of Birmingham.

Carl Wheldon Director

Jack Bishop Neutron Lead

Ben Phoenix Technical Lead

21/22

A Birmingham Laboratory Portrait, CW, TzKW, JB, Y-LC, BP, DH, Nuclear Physics News, 34 issue 4 (2024) p4-8 (5 pages).

Thanks for listening. Any questions?

22/22