

Rep. Prog. Phys. 87 117801

Observation of entangled top quarks with the CMS Detector

AJ Wildridge

LPC Physics Forum

Feb. 20, 2025

• Classical physics is void of phenomenon featuring entanglement

$$|\psi\rangle = |a\rangle_A \otimes |b\rangle_B$$

• Classical physics is void of phenomenon featuring entanglement

$$|\psi\rangle = |a\rangle_A \otimes |b\rangle_B$$

- On the surface, entanglement is clearly a statement about correlations
 - But classical physics can be correlated...

• Classical physics is void of phenomenon featuring entanglement

$$|\psi\rangle = |a\rangle_A \otimes |b\rangle_B$$

- On the surface, entanglement is clearly a statement about correlations
 - But classical physics can be correlated...
- Simplest example of entanglement:
 - 2 two-level systems (A & B) in a superposition of anticorrelated states

Feb. 20, 2025

• Classical physics is void of phenomenon featuring entanglement

$$|\psi\rangle = |a\rangle_A \otimes |b\rangle_B$$

- On the surface, entanglement is clearly a statement about correlations
 - But classical physics can be correlated...
- Simplest example of entanglement:
 - 2 two-level systems (A & B) in a superposition of anticorrelated states

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINSTEIN, B. PODOLSKY AND N. ROSEN, Institute for Advanced Study, Princeton, New Jersey (Received March 25, 1935)

"This makes the reality of P and Q depend upon the process of measurement carried out on the first system, which does not disturb the second system in any way. No reasonable definition of reality could be expected to permit this"

- But classical physics can be
- Simplest example of entanglement.
 - 2 two-level systems (A & B) in a super

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINSTEIN, B. PODOLSKY AND N. ROSEN, Institute for Advanced Study, Princeton, New Jersey

(Received March 25, 1935)

"This makes the reality of P and Q depend upon the process of measurement" carried out on the first system, which does not disturb the second system in any way. No reasonable definition of reality could be expected to permit this"

- But classical physics can be
- Simplest example of entanglement.
 - 2 two-level systems (A & B) in a super

VIEW

5, 1935)

coul

or Advanced Study, P

John Stewart Bell

ical Reality Be Considered Complete?

"That particular interpretation has indeed a grossly nonlocal structure. This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions."

ON THE EINSTEIN PODOLSKY ROSEN PARADOX*

J. S. BELL[†] Department of Physics, University of Wisconsin, Madison, Wisconsin

(Received 4 November 1964)

_. C Pł

John Stewart Bell, CERN, 1973

.........

Can we learn anything more about QM at particle colliders?

Top Quark Physics

 Top quark is the heaviest fundamental particle discovered thus far: m_t =172.52±0.33 GeV

• LHC is a top quark factory (<u>100m+</u> thus far)

- Top Quark Spin Correlations
- Spin correlations are dependent on **production mode** $(gg vs. q\bar{q})$ and higher orbital momenta \rightarrow function of e.g. Θ_t , $m(t\bar{t})$
- Top quark spin cannot be measured directly
- Fully preserved in charged leptonic and down-type quark decays of W boson

Measurement of Top Quark Spin Density Matrix in dilepton

• Spin density matrix fully captured by a four-fold angular distribution $1 d^4 \sigma = 1$

$$\frac{1}{\sigma} \frac{\alpha}{d\Omega d\overline{\Omega}} = \frac{1}{4\pi^2} \left(1 + \kappa \mathbf{B} \cdot \Omega + \bar{\kappa} \mathbf{B} \cdot \overline{\Omega} - \kappa \bar{\kappa} \mathbf{\Omega} \cdot (\mathbb{C} \overline{\Omega}) \right)$$

$$= \left(B_k \right) \qquad \qquad \left(C_{kk} - C_{kr} \right)$$

- Spin Polarization $\mathbf{B}/\overline{\mathbf{B}} = \begin{pmatrix} \mathcal{B}_{R} \\ B_{r} \\ B_{n} \end{pmatrix}$ Spin Correlation $\mathbb{C} = \begin{pmatrix} \mathcal{C}_{kk} & \mathcal{C}_{kr} & \mathcal{C}_{kn} \\ \mathcal{C}_{rk} & \mathcal{C}_{rr} & \mathcal{C}_{rn} \\ \mathcal{C}_{nk} & \mathcal{C}_{nr} & \mathcal{C}_{nn} \end{pmatrix}$
- Can integrate above four-fold angular distribution to get 1D distributions for each spin coefficient

$$\int \frac{d^4\sigma}{d\Omega d\overline{\Omega}} \to \frac{1}{\sigma} \frac{d\sigma}{dx} = \frac{1}{2} (1 + [\text{Coef.}]x) f(x)$$

[PRD 100 (2019) 072002]

Measurement of Top Quark Spin Density Matrix in dilepton

- SM predicts zero polarization for $t\bar{t}$ (< 10^{-2}) QCD is CP even
 - Zero polarization \rightarrow zero slope at parton level 0

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{1/2}^i} = \frac{1}{2} \left(1 + B_i \cos\theta_{1/2}^i \right) \qquad \text{cms}$$

0.08

35.9 fb⁻¹ (13 TeV)

Measurement of Top Quark Spin Density Matrix in dilepton

- SM predicts non-zero correlation for $t\overline{t}$
 - Non-zero correlation \rightarrow asymmetry in $cos\theta_1^i cos\theta_2^j$ distribution at parton level

How to probe entanglement

• What does it mean to be **<u>not</u>** entangled? Separable!

$$|\psi\rangle = |a\rangle_A \otimes |b\rangle_B$$

- For pure states this is easy → measure entanglement entropy
- At the LHC top quarks are produced in a mixed state and thus can be represented as a density operator

$$\rho = \frac{1}{4} \left[I_4 + \Sigma_i \left(B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i \right) + \Sigma_{i,j} C_{ij} \sigma^i \otimes \sigma^j \right]$$

- Need to determine an entanglement witness, Δ
- Hard to show density operator is separable but you can "easily" show it is non-separable → entangled!

Peres, <u>Phys. Rev. Lett. **77**</u>, 1413 Horodecki, <u>Phys. Lett. A **232**, 5</u>

How to probe entanglement: Peres-Horodecki Criterion

- Perform operation (anti-unitary) on subspace (e.g. A)
- If a state is separable \rightarrow Unit trace, Hermitian, Eigenvalues ≥ 0
- Therefore, a state is entangled if the above conditions don't hold for the partial transpose of the spin density matrix, ρ
- A sufficient condition for **entanglement** using Peres-Horodecki Criterion:

$$\Delta = C_{nn} + |C_{kk} + C_{rr}| - 1 > 0 \quad [Eur. Phys. J. Plus 136, 907]$$

$$At low m(t\bar{t})$$

$$C_{kk} > 0 \& C_{rr} > 0 \rightarrow tr[C] > 1$$

$$D = -\frac{tr[C]}{3} \quad \frac{1}{\sigma} \frac{d\sigma}{d \cos\varphi} = \frac{1}{2}(1 - D \cos\varphi)$$

$$D < -\frac{1}{3} \rightarrow \text{entangled}!$$
easure *D* to access entanglement information!

Μ

How to discover **entangled** top quarks

- CMS probed the production threshold region for entanglement
- Mostly timelike (spacelike) separated decays in production threshold (boosted) region

Rep. Prog. Phys. 87 117801

Event selection

- Dileptonic channel (*ee*/μμ/eμ) w/ 2016 data
- 2 oppositely charged isolated leptons (ee, eµ and µµ)
 - Leptonic decays of taus included in signal
 - $p_{\rm T}$ & $|\eta|$ cuts applied to tight electrons & muons
 - Veto events with more than two leptons
- Low $m_{l\bar{l}}$ events rejected
- \geq 2 anti- k_t jets (R=0.4)
 - $\circ \quad p_{
 m T}$ & $|\eta|$ cuts applied
 - Jet cleaning & iCSVv2 loose working point
- ee, μμ channels have additional selection criteria applied to reduce Drell-Yan background
- Reject events failing kinematic reconstruction constraints

Dileptonic Top Quark Reconstruction

- Use algebraic method to solve for neutrino **3-vectors**
- Results in quartic equation for neutrino momenta

 $0 = \sum_{i=0}^{i} c_i(m_t, p_{\ell^+}, p_{\ell^-}, p_b, p_{\bar{b}}) p_x(\bar{\nu})^i$ Pick solution that has lowest m(t \bar{t})

$$\begin{split} m_{t}^{2} &= (E_{l^{+}} + E_{\nu} + E_{b})^{2} - (p_{x,l^{+}} + p_{x,\nu} + p_{x,b})^{2} - (p_{y,l^{+}} + p_{y,\nu} + p_{y,b})^{2} - (p_{z,l^{+}} + p_{z,\nu} + p_{z,b})^{2} \\ m_{\bar{t}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}} + E_{\bar{b}})^{2} - (p_{x,l^{-}} + p_{x,\bar{\nu}} + p_{x,\bar{b}})^{2} - (p_{y,l^{-}} + p_{y,\bar{\nu}} + p_{y,\bar{b}})^{2} - (p_{z,l^{-}} + p_{z,\bar{\nu}} + p_{z,\bar{\nu}})^{2} \\ m_{W^{+}}^{2} &= (E_{l^{+}} + E_{\nu})^{2} - (p_{x,l^{+}} + p_{x,\nu})^{2} - (p_{y,l^{+}} + p_{y,\nu})^{2} - (p_{z,l^{+}} + p_{z,\nu})^{2} \\ m_{W^{-}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}})^{2} - (p_{x,l^{-}} + p_{x,\bar{\nu}})^{2} - (p_{y,l^{-}} + p_{y,\bar{\nu}})^{2} - (p_{z,l^{-}} + p_{z,\bar{\nu}})^{2} \\ E_{x}^{MET} &= p_{x,\nu} + p_{x,\bar{\nu}} \\ E_{y}^{MET} &= p_{y,\nu} + p_{y,\bar{\nu}} \end{split}$$

Fraction(Events

Top Quark Reconstruction – $m_{\ell h}$ method

TOP-23-006, TOP-23-001, TOP-20-006, TOP-18-006, TOP-18-004, TOP-17-014, TOP-16-011, TOP-16-007, TOP-15-010, TOP-12-028

- Sample W boson mass from Breit-Wigner 1.
- Solve quartic equation and pick solution that 2. has lowest $m(t\bar{t})$
- 3. Repeat process 100x smearing leptons & b jets within resolution & resampling W mass
- Compute solution as weighted sum from 4. smears weighted by true $m_{\ell h}$ distribution
- 5. Pick jet-parton assignment that maximizes sum of weights

Top Quar _____

Bumblebee: Foundation Model for Particle Physics Discovery arXiv:2412.07867v1

1. Sample

TOP-23-006, TO

TOP-17-014, TO

2. Solve qui has low

3. Repeat within r

4. Comput smears

5. Pick jetof weig Andrew J. Wildridge Department of Physics and Astronomy Purdue University West Lafayette, IN 47907 awildrid@purdue.edu

Ethan M. Colbert Department of Physics and Astronomy Purdue University West Lafayette, IN 47907 colberte@purdue.edu

Andreas W. Jung Department of Physics and Astronomy Purdue University West Lafayette, IN 47907 anjung@purdue.edu Jack P. Rodgers Department of Physics and Astronomy Purdue University West Lafayette, IN 47907 jprodger@purdue.edu

Yao Yao Department of Physics and Astronomy Purdue University West Lafayette, IN 47907 yao317@purdue.edu

Miaoyuan Liu Department of Physics and Astronomy Purdue University West Lafayette, IN 47907 liu3173@purdue.edu permute $b, l, \overline{b}, \overline{l}$

smear

 m_W , **b**, **l**, \overline{b} , \overline{l}

100 times

Measurement of Entanglement in Threshold Region - Method

- Used m_{lb} method for reconstructing both neutrinos
- Measured D using a binned profile likelihood fit of $\cos \varphi$
 - Performed fit in: 0 $345 < m(t\bar{t}) < 400 \text{ GeV }$ $\beta_{z}(t\bar{t}) < 0.9$

Rep. Prog. Phys. 87 117801

Comp. Softw. Big Sci. 8 (2024) 19 Profile Maximum Likelihood fit - COMBINE

$$\mathcal{L} = \prod_{c \in channels} \prod_{b \in bins_c} Pois(n_{cb} | v_{cb}(\mathbf{H}, \mathbf{X})) \prod_{\chi \in \mathbf{X}} p_{\chi}(a_{\chi} | \chi)$$

- Channels are statistically independent "channels". Can be decay topology for example (ee vs. $e\mu$ vs. $\mu\mu$)

- We only performed the fit in a single channel "combined" n_{cb} is number of observed events v_{cb} is number of expected events $\eta \in H$ are unconstrained nuisance parameters meaning they have no prior
 - 0
 - Signal strength modifier is typically an unconstrained nuisance D is also unconstrained in our fit and we freeze signal strength modifier
- $\chi \in X$ are constrained nuisance parameters meaning we know/can estimate their prior probability distribution
 - a_{χ} are parameters/inputs for the prior (auxiliary measurements)
 - All of our priors are either log normal or shape-based 0

Measurement of Entanglement in Threshold Region - Method

- Need to fit POI D
 - Q: How to create variations of D?
 - A: Generate top quark pairs with zero spin correlation $\rightarrow D = 0$
- Can create new samples with mixtures of SM and no spin corr.
- These mixtures only probe
 [D_{SM}, 0] → Mirror to probe [-1, D_{SM}]

Rep. Prog. Phys. 87 117801

Measurement of Entanglement in Threshold Region

Large mismodeling seen for $m(t\bar{t}) \approx 345$ GeV

JHEP (2025), 64

Measurement of Entanglement in Threshold Region

- Large mismodeling seen for $m(t\bar{t}) \approx 345 \text{ GeV}$
- Consistent between dilepton & lepton+jets and CMS & ATLAS

Measurement of Entanglement in Threshold Region

Theory predictions with

Color singlet and octet

EPJC 60, 375 (2009)

contributions to spin singlet

NRQCD

- Large mismodeling seen for $m_{t\bar{t}} \approx 345 \text{ GeV}$
- Excesses seen could be from toponium
- New (hypothetical) exciting SM resonance

 - Spin singlet \rightarrow Maximally entangled tt Exciting implications for entanglement measurements!
- Signal model includes spin and color singlet ${}^{1}S_{0}^{[1]}$

JHEP (2025), 64

JHEP 07 (2023) 141

1.4 138 fb⁻¹ (13 TeV) CMS dơ/dm^{eµ} [fb/GeV] Dilepton, parton level ATLAS 1/o do/dm(tī) [GeV⁻¹ Data • Data, dof = 6 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ 1.2 $gg \rightarrow {}^{1}S_{0}^{[8]}$ -- aMC@NLO+Her7.1.3 • POW+PYT. $\chi^2 = 5$ -... Powhea+Herwia7.0.4 10-**EXEMPTE** $\chi^2 = 7$ --- Powheg+Pvthia8 POW+HER. $\chi^2 = 4$ Powheg+Herwig7.1.3 dσ / dM [pb/GeV] 10⁻² ∇ m^{MC}_t = 175.5 GeV, χ^2 = 18 aMC@NLO+Pythia8 Powheg+Pythia8 (rew.)_ $m_t^{MC} = 169.5 \text{ GeV}, \chi^2 = 6$ $gg \to {}^1S_{\scriptscriptstyle 0}{}^{[1]}$ 0.8 Stat error Total unc. 10^{-3} Stat
 Syst error Stat. unc. 0.6 10^{-4} $q\bar{q} \rightarrow {}^{3}S_{1}^{[8]}$ 0.4 10⁻⁵ 10-0.2 LHC $\sqrt{s} = 14$ TeV Pred. C/Data 335 340 345 350 355 360 375 380 365 370 M [GeV] 500 1000 1500 2000 m^{eμ} [GeV] 32 m(tt) [GeV] Feb. 20, 2025 LPC Physics Forum

Measurement of Entanglement in Threshold Region - Method

- Need to fit POI D
 - \circ Q: How to create variations of D?
 - A: Generate top quark pairs with zero spin correlation $\rightarrow D = 0$
- Can create new samples with mixtures of SM and no spin corr.
- These mixtures only probe $[D_{SM}, 0] \rightarrow Mirror to probe [-1, D_{SM}]$

- For η_t we cannot mirror templates \rightarrow
- Performed the fit both including & excluding the ground state of toponium, η_t

Pre-fit Distributions

Better agreement when including η_t

Pre-fit Distributions

- Better agreement when including η_t
- MadGraph5 aMC@NLO+Pythia8 describes the cos φ distribution better near production threshold

Rep. Prog. Phys. 87 117801

Corrections and Uncertainties

- Entanglement observed via slope parameter *D* → shape of *cosφ* is important
- Leading systematics
 - Jet Energy Scale (JES)
 - η_t normalization
 - Parton shower Initial state radiation (ISR)/Final state radiation (FSR)
 - Top quark mass
 - NNLO QCD reweighting
 - EWK corrections
 - Z+jets normalization

Rep. Prog. P	ys. 87 1	17801
--------------	-----------------	-------

Uncertainty category	Туре	Effect on yield	Effect on sha	ipe
Experi	mental uncer	tainties		
Trigger efficiency	Shape	0.5%	0.2%	
Lepton ident./isolation	Shape	3.0%	0.2%	
b tagging (heavy)	Shape	0.6%	0.1%	
b tagging (light)	Shape	0.3%	0.2%	
Kinematic reconstruction	Shape	0.3%	0.1%	
JES: Absolute	Shape	0.9%	0.3%	
JES: Absolute (stat)	Shape	0.4%	0.2%	
JES: Pileup	Shape	0.5%	0.2%	
JES: Flavor QCD	Shape	0.7%	0.2%	
JES: Relative balance	Shape	0.4%	0.8%	
JER	Shape	0.3%	0.3%	
Unclustered energy	Shape	0.2%	0.3%	
Pileup	Shape	0.4%	0.1%	
tt normalization	Norm.	4.4%	0.3%	
Z+jets normalization	Norm.	1.6%	0.4%	
Z+jets shape	Shape	0.2%	0.2%	
Luminosity	Norm.	1.2%	<0.1%	
Ма	odel uncertain	nties		
Matrix-elem. renorm. scale variation	Shape	0.4%	0.3%	
Matrix-elem. fact. scale variation	Shape	0.6%	0.2%	
Parton shower: Initial-state radiation	Shape	0.8%	0.7%	
Parton shower: Final-state radiation	Shape	2.1%	0.4%	
Top quark mass	Shape	2.4%	0.5%	
ME/parton shower matching	Norm.	0.8%	<0.1%	
Underlying event	Norm.	0.8%	<0.1%	
PDF	Shape	0.9%	0.1%	
Color reconnection	Norm.	0.8%	<0.1%	
b quark fragmentation	Shape	0.7%	0.4%	
B hadron semilept. decays	Shape	0.3%	0.2%	
Branching fraction	Norm.	1.9%	<0.1%	
NNLO QCD reweighting	Shape	0.6%	0.4%	
EWK corrections	Shape	0.6%	0.4%	
$\eta_{\rm t}$ normalization	Norm.	0.7%	0.8%	3
$n_{\rm b}$ binding energy	Shape	0.2%	0.1%	

Post-fit Distribution

- Good agreement within uncertainties
- Post-fit value of 2.53% more spin correlated tt contribution

Measurement of Entanglement in Threshold Region - Results

- Significance > 5σ when not including uncertainty and effect of η_t
- Although η_t existence hasn't been confirmed experimentally, important to know possible bias & reduction of significance of measurement

Measurement of Entanglement in Threshold Region - Results

- Significance $> 5\sigma$
- Observation of entangled top quarks!

Conclusion

- Top quarks are entangled
 - Spins are correlated in a non-classical manner
- First inclusion of bound-state effects in the production threshold region via η_t
- Start of quantum information studies in high energy physics at the LHC
- New door into "old" physics

Rep. Prog. Phys. 87 117801

Conclusion

- Top quarks are enta Spins are correlate 0
 - manner
- First inclusion of bou the production three
- Start of quantum inf high energy physics
- New door into "old"

Discovery of a Pseudoscalar Structure

LPC Physics Forum

- CMS has now published a separate paper recognizing there is a pseudoscalar structure in the $m(t\bar{t})$ spectrum in the threshold region
- Consistent with ${}^{1}S_{0}^{[1]}$ and fit $\sigma(\eta_{t})$ of 7.1 pb ± 11%
- Further investigations by both the experimental and theoretical communities are necessary to elucidate the nature of this excess

138 fb⁻¹ (13 TeV) CMS Preliminary 95% CL exclusion, $\Gamma_A = 1.0\%$ m_A Observed 95% expected 68% expected $\square \square \Gamma_{At\bar{t}} > \Gamma_A$ 1.2 ----- Median expected 1.0 0.8 0.6

HIG-22-013 PAS

What's next? – My personal viewpoint

Phys. Rev. D 108, 076025 Phys. Rev. D 109, 096027

- Does the wave function "collapse" after the top quarks decay?
 - Decoherence studied in a high energy environment only @LHC!!
 <u>Phys. Rev. Lett. 127, 161801</u> EPJC 82, 666 Phys. Rev. D 109, 115023
- Do top quarks violate Bell's inequality?
 - Cannot perform direct Bell test PLB 280, 3–4
 - Measure expectation value of Bell operator
- What quantum observables are sensitive to new physics?
 - Entanglement witness has shown to give orthogonal directions JHEP (2023)148
 - Magic? non-linear combination of correlations Phys. Rev. D 110, 116016
 - Maybe something still new entirely
- Qutrit entanglement
 - $H \rightarrow WW, H \rightarrow ZZ$ <u>Phys. Rev. D 109, 113004</u>
 - Double slit-like experiment <u>arXiv:2411.13464</u>

Thanks! awildrid@purdue.edu

400

NECTROPY.

R

Spacelike separated entanglement

- First off, entanglement != violation of Bell inequality
- Because subsequent decays are lighter, spacelike separated events typically stay spacelike separated
- Closing locality loophole requirements:
 - 1. spacelike separated measurements
 - 2. Random measurement settings

Modified from [2402.07972]

Feb. 20, 2025

Helicity Basis: Spin Quantization Axes $\{\hat{\mathbf{k}}, \hat{\mathbf{n}}, \hat{\mathbf{r}}\}$

LPC Physics Forum

- Helicity $\hat{\mathbf{k}}$ -axis: top quark direction in $t\overline{t}$ rest frame
- Transverse $\hat{\mathbf{n}}$ -axis: transverse to production plane

$$\widehat{\mathbf{n}} = \frac{\operatorname{sign}(\cos \Theta_{t})}{\sin \Theta_{t}} (\widehat{\mathbf{p}} \times \widehat{\mathbf{k}})$$

• **r**-axis: orthogonal to the other two axes

$$\hat{\mathbf{r}} = \frac{\operatorname{sign}(\cos \Theta_t)}{\sin \Theta_t} (\hat{\mathbf{p}} - \hat{\mathbf{k}} \cos \Theta_t)$$

- \hat{p} : direction of the incoming parton, i.e. the direction of the proton beam (z-direction in the laboratory frame)
- Θ_t : top quark scattering angle in $t\bar{t}$ rest frame

ATLAS top quark pair entanglement

- ATLAS observed entanglement last fall [arXiv:2311.07288]
- Significant differences to CMS
 - Calibrated results & entanglement boundary to particle-level
 - No toponium or electroweak corrections included in threshold treatment

Particle-level Invariant Mass Range [GeV]

Electroweak Corrections

- NLO EWK differential cross-section calculated using Hathor
- LO QCD for uncertainty generated with MadGraph5
- Uncertainty in EWK correction is taken as difference between multiplicative and additive approaches

$$\kappa_{NLO}^{EWK}(m_{t\bar{t}}, \cos\theta^{*}) = \frac{\frac{d\sigma(m_{t\bar{t}})}{d\cos\theta} \sum_{NLO}^{EWK} \left|_{\cos\theta^{*}} + \frac{d\sigma(m_{t\bar{t}})}{d\cos\theta} \sum_{LO}^{QCD} \right|_{\cos\theta^{*}}}{\frac{d\sigma(m_{t\bar{t}})}{d\cos\theta} \sum_{LO}^{QCD} \left|_{\cos\theta^{*}}}$$

$$n_{bin}^{NLO \ QCD \times EWK} = \kappa_{NLO}^{EWK} n_{bin}^{POWHEG}$$

$$n_{bin}^{NLO \ QCD + EWK} = n_{bin}^{LO \ QCD} + n_{bin}^{NLO \ QCD} + n_{bin}^{NLO \ QCD} + n_{bin}^{NLO \ EWK}$$

Electroweak Corrections

- Scale factors used to correct
 Powheg NLO MC
- Use generator level m(ttbar) and cos(theta) to look-up scale factor per event

