
0.1 Beam-beam effects, parameter choices, and luminosity

Fig. 1: Luminosity at Z as a function of betatron tunes for the CDR configuration [?]. The colour scale
from zero (blue) to 2.3 · 1036 cm2s1 (red). The white narrow rectangle above (0.57, 0.61) shows the
footprint due to the beam-beam interaction.

Following encouraging experience at DAΦNE and SuperKEKB, the FCC-ee is based on the so-
called crab waist scheme. It features very flat beams (σ∗

x ≫ σ∗
y), a large crossing angle between the

beams and crab sextupoles at each side of the IPs allowing to maintain a good stability of the particles
trajectories even when the beam-beam interaction is strong, thus allowing for a high luminosity. In this
regime, the luminosity may be expressed as follows:

L =
γ

2ere

Itotξy
β∗
y

RHG (1)

with the relativistic factor γ, the elementary charge e, the classical electron radius re, the total beam
current Itot, the vertical beam-beam parameter ξy, the vertical optical β function at the IP β∗

y and the
hourglass reduction factor RHG. The total current is constrained by the design choice of limiting the
emitted synchrotron radiation power to 50 MW per beam. The highest vertical beam-beam parameter is
therefore desired. In order to maintain the tune footprint away from low order resonance all configura-
tions feature ξy ≈ 0.1 (Fig. 1). The smallest β∗

y is also desired, yet it is limited by the reduction of the
luminosity by the hourglass effect, leading to the condition β∗

y ≈ Li, the interaction length defined as:

Li =
σz√
1 + ϕ2

, ϕ =
σz
σx

tan

(
θ

2

)
(2)

with the horizontal and longitudinal beam sizes σx,z , the so-called Piwinski angle ϕ related to the full
crossing angle between the beams at the IP θ. Considering the small angle approximation (θ ≪ 1)
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and the large Piwniski angle case (ϕ ≫ 1), then the interaction length reduces to 2σx/θ. The crossing
angle θ is imposed by the choice of layout, in particular due to the short common chamber around the
IP specifically designed to avoid parasitic beam-beam encounters. In order to maximise the luminosity it
is therefore favourable to minimise the horizontal beam size in order to allow for a reduction of β∗

y , yet
it is important to keep in mind that the β∗

y is eventually limited due to the impact of the corresponding
chromatic correction on dynamic aperture. At this point β∗

y,min = 0.7 mm is considered acceptable for
Z and slightly higher for higher energies (Chap. ??), thus constraining the horizontal beam size at the IP
σx ⪆ β∗

y,minθ/2.
The beam-beam tune shifts are given by

ξx =
Nbre
2πγ

β∗
x

σ2
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, ξy =
Nbre
2πγ

β∗
y
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(3)

with Nb the number of electron or positron per bunch, given by

Nb =
Itot

efrevnb
(4)

with the revolution frequency frev and the maximum number of bunches nb. The number of bunches
cannot be arbitrary large due to the need for a minimal spacing between bunches (about 25 ns) in order
to avoid adverse effects of electron clouds (Chap. ??) as well as the needs for gaps for injection and
extractions (Chap. ??). This constraint is mostly relevant for the Z, yielding a minimum bunch charge of
about 2 · 1011 e±/b. In the small crossing angle and large Piwinski angle approximation, the beam-beam
parameters reduce to
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πγ

2β∗
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√
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. (5)

The bunch length is therefore a key parameter, it is driven by beamstrahlung, synchrotron radiation in
the arcs, the RF strength and the choice of lattice, mainly through the momentum compaction factor. We
can write

σz = σδ
ηC0

2πQs
, Qs =
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√
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η cos(ϕs), sin(ϕs) =

∆E

eVRF
(6)

with VRF and ωRF the RF voltage and frequency. C0 is the machine circumference, P0 the reference
momentum, η the slippage factor and ∆E the total energy loss per turn. The synchrotron tune and
synchronous phase are given by Qs and ϕs. The momentum spread is given by

σ2
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where σδ,SR the r.m.s. relative momentum spread caused by synchrotron radiation in the arcs and τE,SR

the corresponding damping time. nIP is the number of IPs, αe is the fine structure constant and ρ is
the local bending radius of the particles’ trajectories cause by the beam-beam interaction. Using strong
assumptions, it is possible to approximate the integral over the bending radius as follows [?]∫

ds

⟨
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Using the equations above we write the equation for the momentum spread:
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δ,SRσ
3
δ − αBS = 0, αBS ∝
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, (9)

the corresponding bunch length follows from Eq. 6. Due to its approximate nature, this equation is
hardly used in the design and the impact of beamstrahlung is rather obtained via tracking simulations.
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Yet this equation reveals that, in the regime of strong beamstrahlung (σδ,BS ≪ σδ,SR) the sensitivity
to RF parameters and momentum compaction factor is reduced from the usual square root dependence
due to fact that the beam-beam force, and consequently the strength of beamstrahlung, is dependent on
the bunch length. In the regime of strong beamstrahlung, we see that the main drivers for the bunch

length and momentum spread are the bunch intensity and the horizontal beam size (σδ ∝ N
5
3
b σ

− 5
2

x ).
These quantities must be adjusted to minimise beamstrahlung. As discussed above, the bunch intensity
is constrained on the low side at the Z by the electron cloud instability. At the other energies it needs
to be kept high enough to maintain the beam-beam parameter (and consequently the luminosity) at the
specified level. Also, a low horizontal emittance is required to achieve a low vertical emittance. Indeed,
the two quantities are bound by the quality of the optics correction, currently it is assumed that ϵy =
10−3ϵx can be achieved (Chap. ??). The low vertical emittance enters directly in the luminosity, but is
also important to maintain a good beam lifetime in the presence of a reduced vertical dynamic aperture
that comes along with the low β∗

y . Thus, maintaining a high β∗
x is key to reduce beamstrahlung and

maintain the horizontal beam size at the level of β∗
y in order to minimize the luminosity lost to the

hourglass effect in the vertical plane, as discussed above. Nevertheless, the horizontal β∗ is limited on
the high side by the corresponding increase of the horizontal beam-beam parameter as well as of the
strength of horizontal synchrobetatron resonances. These aspects are critical as the transverse tunes are
set just above the half integer in the horizontal plan, above the coupling resonance and below the third
order resonance in the vertical plane (Fig. 1), thus minimizing the impact of low order resonances on
the beam quality. In this area, synchrobetatron sidebands of the half integer resonance in the horizontal
plane are strongly excited due to the beam-beam interaction with a large Piwinski angle, leading to
coherent instabilities, so-called X-Y instabilities [?], as well as incoherent blow up [?]. Consequently, the
horizontal β∗ must be chosen to maintain the strength of synchrobetatron resonances and the horizontal
beam-beam parameter (ξx ≪ Qs) at an acceptable level. This optimisation, coupled to the relevant
longitudinal aspects treated in the next paragraph, is done based on tracking simulation (Chap. ??).
Thanks to the increase in radiation damping and the shorter bunch length at higher energies, these effects
become less severe and higher β∗

x are allowed.
The tune space depicted in Fig. 1 corresponds to the CDR configuration, yet the main features have not
fundamentally changed. The main difference is the reduction of the tune per quarter of the machine (4
IPs layout), with respect to the half of the machine in the CDR (2 IPs layout) in order to maintain the
total tune in the same area, thus avoiding important resonances when considering the impact of the real
lattice (Fig. ??). Approaching the half integer resonance is necessary to accommodate the twice larger
total tune footprint with the 4 IPs layout with respect to the CDR.

The longitudinal parameters are set to ensure a sufficient bucket height, at the same time the
spin tune spread needs to be remain sufficiently smaller that the synchrotron tune to allow for energy
calibration via resonance depolarisation (Chap. ??)(

∆p

p

)
max

=

√
eVRFωRFC0

2π2cηE0
(2 cos(ϕ) + (2ϕs − π) sin(ϕs)) > 0.01, Qs > aγσδ,SR (10)

with a the anomalous magnetic moment. Aiming at a high voltage and low momentum compaction fac-
tor, maintaining a high synchrotron tune is therefore favourable. The available RF voltage is an important
cost driver, it is therefore kept at the level required to compensate for the energy lost by synchrotron ra-
diation maintaining a reasonably low synchronous phase. At the Z, an additional constraint on the RF
voltage results from the choice of operating 2-cell cavities in reverse polarity mode in order to keep the
same RF system for the Z, W and H energies (Chap. ??). The voltage is kept higher than necessary to
minimized the impact of transient beam loading.
Two different lattices are considered, one for the two highest energies (H and t) featuring a lower mo-
mentum compaction factor than the optics for the lower energies (Z and W). This different optics also
allow to maintain low transverse emittances at higher energies.
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While at the Z the number of bunches is constrained by the electron cloud instability, it can be optimised
to obtained the highest luminosity at other energies. This is achieved by choosing the highest bunch
charge that does not yields to too significant lifetime degradation or emittance growth (ξy ≈ 0.1).

A key difference with existing colliders is the fact that beam parameters are defined by an equi-
librium condition that it mostly driven by the beam-beam force itself. Transverse and longitudinal beam
sizes are thus strongly coupled, bringing additional constraints on the design and operation of the collider.
An important aspect is the need for a reasonably adiabatic ramp up of the beam-beam force, leading to
the so-called bootstrap injection scheme (Chap. ??). In a more classical scheme, where one beam would
be circulating, and thus featuring the lattice equilibrium emittances, and a second beam injected with the
equilibrium emittances define by the booster, the beam-beam force over the first turns would significantly
exceed the acceptable strength (ξy ≫ 0.1) causing uncontrolled beam losses and possibly leading to a
3D flip-flop mechanism before reaching the desired equilibrium with longer bunches and thus weaker
beam-beam force.
The 3D flip-flop mechanism is a direct consequence of this strong coupling between the equilibrium in
the different planes. In case of an asymmetry in the strength of beamstrahlung between the two col-
liding bunches, the bunch experiencing less beamstrahlung will see its length decrease, thus increasing
the strength of beamstrahlung for the other beam. As a result, beamstrahlung will decrease further on
the shorter bunch, thus enhancing further the effect. This setup may reach a stable equilibrium where
the two bunches feature small enough asymmetries, yet this already results in a reduction of the lumi-
nosity with respect to the symmetric case [?]. Pushed beyond a certain threshold, the increase in the
beam-beam force leads to beam losses and transverse emittance growth, thus enhancing the phenomenon
in an irreversible manner, eventually causing one bunch to lose most of its intensity and blow up sig-
nificantly while the other bunch experiences a vanishing beam-beam force and is thus let to shrink to
the lattice equilibrium emittance. Avoiding this mechanism imposes tight tolerances on the symmetry
of the two beams, in terms of bunch intensity and optics control in terms of β∗ and equilibrium emittance.
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