Large Piwinski Angle MD

J. Abelleira, R. Assmann, P. Baudrenghien,
C. Bhat, T. Bohl, O. Brüning, R. Calaga,
R. De Maria, O. Dominguez, S. Fartoukh,
M. Giovannozzi, W. Herr, J.-P. Koutchouk,
M. Meddahi, E. Metral, K. Ohmi, G. Papotti,
T. Pieloni, S. Redaelli, L. Rossi,
E. Shaposhnikova, R. Tomas, F. Zimmermann

Piwinski angle

$$R_{\phi} = \frac{1}{\sqrt{1 + \phi^2}}; \quad \phi = \frac{\theta_c \sigma_z}{2\sigma_x}$$

primary motivation for HL-LHC & LHeC

"Piwinski angle"

"luminosity reduction factor" without crab cavity

nominal LHC

0.8

0.6

0.4

0.2

- "LPA" upgrade

← "FCC"

upgrade

6

effective beam size:

$$\sigma^*_{x,eff} \approx \sigma_x^*/R_\phi$$

Piwinski angle:

- geometric overlap
- tune shift
- syn.beta resonances
- symmetry breaking

motivation

- for e+e- colliders crossing angle could lead to large reduction in beam-beam limit & luminosity (DORIS-I→ "Piwinski angle" φ, KEKB → crab cavities)
- little is known about hadron collider beam-beam limit with crossing angle; RHIC & Tevatron: head-on collisions
- the only controlled experiment was done at SppbarS
- ϕ will futher increase for smaller-than-design emittance
- HL-LHC scenarios consider ϕ up to 2.5
- beam-beam limits experiments so far were done for head-on collisions or very small Piwinski angle

historical experiments at SPS collider

K. Cornelis, W. Herr, M. Meddahi, "Proton Antiproton Collisions at a Finite Crossing Angle in the SPS", PAC91 San Francisco

SPS tests up to $\phi > 0.7$ showed some additional beam-beam effect

present nominal LHC: $\phi \sim 0.64$, ATS upgrade: $\phi \sim 2.51$

simulations for nominal LHC with higher bunch charge

simulated luminosity lifetime with no crossing angle is 10 times better than with 285 μ rad angle ($\phi \approx 0.65$, $\beta *=0.55$ m, $\gamma \epsilon=3.75$ μ m, E=7 TeV)

MD plan

- transient losses going into collision, beam lifetime and luminosity lifetime for large and zero Piwinski angle
- beam parameters that correspond to $\xi \ge 0.03$ for $\theta = 0$
- injection energy, collision tunes
- 2 or 3 ultimate low-emittance bunches per beam
- 3 bunches would be at/above safe beam limit (5e11)
- one bunch of each beam collides in IP1, IP5, (IP2) and IP8
- Piwinski angle is varied by changing θ at maximum bunch length longit. blow up in SPS and injected into a 3 MV RF voltage in LHC to obtain 4sigma_z~1.6 ns (times c)
- nominal & zero spectrometer strength in IP8
- orbit correction when changing spectrometer strength
- beams also have to be brought into collision
- TCT adjustment needed in IP8 (& IP2)?

MD table - details

Beam energy [GeV]	450
Optics (injection,	Nominal injection optics (beta*=10 m in 8)
squeezed, special)	
Bunch intensity [#p,	1.7e11 protons, 1.0-1.2 micron emittance
#ions]	
Number of bunches	two per beam with one bunch colliding in
	both IP 1+5 and 8, and the other bunch
	colliding only in IP8
Transv. emittance [m	1.0-1.2 micron (as low as possible)
rad]	
Bunch length [ns @	1.6 ns
4σ]	
Optics change	No
[yes/no]	
Orbit change [yes/no]	Yes, up to 2 mrad half crossing angle
	change in IP8
Collimation change	Change of TCT in IP8 (and IP2)?
[yes/no]	

Simulations of the LPA MD

Parameters

- E=450 GeV, $Np=3\times10^{11}$, 2×10^{11} , 1.2×10^{11} .
- $\sigma_z = 1.6 \text{ns}/4 = 0.12 \text{m}, \ \sigma_\delta = 3 \times 10^{-4}$.
- $\beta_z = \sigma_z / \sigma_\delta = 400 \text{m}, v_s = 0.0034.$
- β *=10m (3m). γ ε=1.5, 2.0×10⁻⁶.
- VRF=3 MV (400MHz). η_p =3.18x10⁻⁴
- IP8 θ (half)=2mrad, $\theta \sigma_z/\sigma_x$ =1.175
- IP2 θ (half)=I mrad, $\theta \sigma_z / \sigma_x = 0.588$

Weak-strong, IP2&8

 10^9 turn/day, $\Delta L/L_0 = 10^{-3}/10^6$ is visible level.

- proton intensity x1,x1.5, x2.
- Np=4x1011 shows clear difference in luminosity degradation.
 2 IPs not feasible!
- Fluctuation is larger in crossing collision.

K. Ohmi

Weak-strong

• 4IP (IP1,2,5,8)

3 IP (IP 1,5,8)

3 or 4 IPs feasible! difference very clear for 4 IPs

K. Ohmi

A difference due to crossing angle is seen with 4IPs, but weak for 3 IPs

Weak-strong Beamsize

doing the experiment with 4 Ips would be preferred

K. Ohm

