Security for Open Science Project

Lead PI - Deb Agarwal, Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory - Brian Tierney, Mary Thompson Argonne National Laboratory - Frank Siebenlist, Ian Foster Pacific Northwest National Laboratory - Jeff Mauth, Deb Frincke University of Illinois, NCSA - Von Welch, Jim Basney University of Virginia - Marty Humphrey University of Wisconsin - Miron Livny, Bart Miller National Energy Research Scientific Computing Center - Howard Walter Energy Science Network - Michael Helm

University of Delaware – Martin Swany

Guiding Principles

- Focus on capabilities that are priorities for and are NEEDED by DOE applications and facilities
- Work closely with a few committed applications and facilities to develop capabilities
- Provide development and deployment of security solutions with and in support of DOE applications and facilities
- Deliverables
 - 18 months Concrete near term goals for deployment activities
 - year 3 and year 5 Longer term deliverables for deployment and possible research activities
- Will provide extensive deployment support

Distributed Science Security Problem

- Applications and Middleware poorly integrated with site security
- Difficult to track users and usage across sites
- Virtual organizations and sites do not have all the tools needed to manage security
- Forensics in distributed environments is tedious and information is scarce
- Grid middleware poses a potentially inviting hacker target in the future as we deploy these large grids
- Credential revocation is very difficult currently
- Firewalls often limit the application connectivity options

Strategy - Prevent, Detect, and Respond

Security CET September 27, 2006

Interrelated Topic Areas

- Auditing and forensics
 - Services to enable sites, communities, and application scientists to determine precisely who did what, where and when.
- Dynamic ports in firewalls
 - Services to open and close ports dynamically for applications while enforcing site policy.
- Identity management
 - Services to seamlessly manage identity and access control across sites and collaborations, and to allow for rapid response to security incidents.
- Secure middleware
 - Services to proactively find and fix software vulnerabilities and guarantee deployed security software is current and correctly configured.

Identity Management

- Problem:
 - Revocation mechanisms are slow and cumbersome
 - Level of integration amongst various solutions incomplete
 - Nagging issues of credential renewal, configuration management, etc.
- Near Term Approach:
 - Build on existing solutions:
 - VOMS, CAS, GUMS, MyProxy, GSI, OCSP
 - Integrate and deploy, e.g.
 - Deploy OCSP service; client support in GT, MyProxy, etc.
 - VOMS support in GridFTP, MyProxy
 - GUMS callout into GT, MyProxy

SOS CET MyProxy Deliverables

Von Welch and Jim Basney NCSA

MyProxy News

- MyProxy Certificate Authority is 1 year old
 - Issues short-lived certificates based on PAM, Kerberos, X.509, and/or Pubcookie authentication
 - Many improvements over past year:
 - LDAP and custom call-outs
 - Support for credential renewal
 - See http://myproxy.ncsa.uiuc.edu/ca
- MyProxy VOMS authorization support
 - Developed by / Presented by Daniel Kouril
 - See http://myproxy.ncsa.uiuc.edu/voms
- MyProxy Java improvements
 - Support for credential renewal in Java CoG
 - MyProxy JAAS module (http://myproxy.ncsa.uiuc.edu/jaas)

Plans in Bugzilla

- Many plans are described in MyProxy bugzilla
- Numbers in presentation correspond to bugzilla entry number
 - e.g. "(#101)" refers to bug 101
- Visit bugzilla to see more details and provide feedback
- Add yourself to cc list for bugzilla item to stay up-to-date on development
- Bugzilla can be found by visiting URL below and clicking on "Bugs" link on left:
 - http://myproxy.ncsa.uiuc.edu

FY 07 MyProxy Deliverables

- Audit logging (#343)
 - Integration with general SOS audit framework
 - Logging of events to allow for intrusion detection, forensics, usage analysis, etc.
- Brute Force attack protection (#325)
 - Resistance to password-guessing attacks on MyProxy server
- Continued...

FY 07 MyProxy Deliverables (cont)

- Code audit
 - In collaboration with UW-Madison
- VOMS support
 - MyProxy issuing credentials with VOMS assertions (#298)
 - Item #1 from http://grid.ncsa.uiuc.edu/myproxy/voms/
 - Daniel Kouril just did item #2: MyProxy server support authorization based on VOMS

FY08 MyProxy Deliverables

- Renewal capabilities (#296)
 - Generalization of EGEE renewal service concept to work with other Grid Infrastructure
 - Collaborate to also support Glite delegation service interface also a possibility
- Replication capabilities
 - Server replication for high-availability (#275)
 - Fail-over support in clients (#306)
- Continued...

FY08 MyProxy Deliverables (cont)

- Cryptographic assessment
 - In collaboration w/LBNL
- Integration with OCSP (#281)
 - Determination of invalid credential prior to issuance
 - Allows RPs to increase trust in MyProxy-issued credentials, decrease need for RP to check
 - Decreases trouble-shooting aspects by detecting bad credentials early

FY09-FY11 MyProxy Deliverables

- PKCS11 Support
 - Obtain Grid credentials via existing HW tokens
 - E.g. FIPS 201, Smart Cards
 - Provide MyProxy credentials to PKCS11-aware applications (#291)
 - E.g. Web browsers
- Name-mapper service callout (#344)
 - Allow MyProxy to callout to determine mapping from authenticated client identity to DN
 - Support for existing Grid services e.g. GUMS
- Continued...

FY09-FY11 MyProxy Deliverables (cont)

- Site credential translation hooks
 - Enhancement of GT with hooks to callout to MyProxy in order to automatically translate between local credentials and Grid credentials
 - E.g. Kerberos->X509
 - Also hooks to translate between Grid credentials and local credentials (e.g. pkinit)

Identity Management

- Longer term:
 - XKMS support to ease configuration management
 - Integrate data access control policy with work on semantic workflows
 - PKCS 11 support
 - Ubiquitous hooks in middleware for site security integration
 - E.g. Kerberos, auditing,

Secure Middleware

Problem

- Grid middleware has become an essential part of the science infrastructure security of this infrastructure is an essential consideration
- Approach steps
 - Architectural analysis to understand the system level view of a middleware component and its external interactions
 - Identify trust boundaries/threat model to understand the dependencies and areas of concern
 - Component and system analysis of the particular software to understand vulnerabilities
 - Disclosure of results process is handled carefully to allow time for mitigation efforts
 - Mitigation mechanisms to provide means of patching or mitigating the potential security vulnerability

SOS Current Plan for Start

- Start will be some time after October 2006
- Five year development and implementation plan
- Aggressive schedule and tight funding
- Expect to be able to work closely with and leverage extensively other efforts already underway internationally