Creatis contribution in NA4 (Medical applications), EGEE2

Scientific Contributors:

F. Bellet

H. Benoit-Cattin, deputy

P. Clarysse

L. Guigues

C. Lartizien

I. Magnin, supervisor

C. Pera

PhD students: B. Delhay, J. Schaerer

CREATIS, UMR CNRS #5515, U630 Inserm, INSA Lyon, UCB Lyon www.creatis.insa-lyon.fr

• CREATIS

- Research and application center in medical image and signal processing
- Research Unit of the French National Center of Scientific Research (CNRS) and National Health Institute (INSERM)
- Common to INSA Lyon Engineering School and UCB Lyon University
- 40 researchers (10 Medical doctors), 70 PhD and master students,
 15 technicians
- 12 persons (3.1 etp) involved in EGEE2

• CREATIS applications in EGEE2

- **SIMRI**: MRI Simulator (H. Benoit-Cattin)
- **PETSIM**: Simulation of 3D PET images (C. Lartizien)
- CAVIAR: Cardio-Vascular image analysis on grid (P. Clarysse)
- This: Therapeutic irradiation simulator (L. Guigues)
- Participation to MDM: Medical Data Management (J. Montagnat, I3S, Nice)

SIMRI: 3D Magnetic Resonance Simulator

Aims

- Study MR sequences in silico
- Study MR artifacts
- Ground truth for image processing algorithm evaluation
- Core or image processing based artifact correction method

- Virtual objects defined by a MR physical parameters dataset
- MR device simulated through electro-magnetism model (Bloch equation)

Main facts

- June 2002 : MPI based parallelization of the simulation kernel
- Nov. 2003 : 1^{rst} Grid deployment
- June 2005: SIMRI@Web Simulation service through a web portal
- Nov 2005: SIMRI code distributed under CECILL free licence

- Global MPI testing: inter-clusters communication, synchronizing execution tasks
- Web portal V2: Pgrade or Genius or specific solution

SIMRI: Pre-production test

Test protocol

- 9th March 06 / 20 March 06
- 10 jobs per day (request of 10 to 32 nodes)
- 512x512 image simulation: 8 h CPU

Results

- Only 62 % of jobs correctly achieved!
- Saturation of some clusters
- Still clusters with bad MPI configuration

Questions

- Is EGEE grid adapted to run such type of MPI jobs ?
- Are the VO biomed ressources sufficient for such applications?

CGCEnabling Grids				(1 taleta)	
	20Mars14h30-214-32Noeuds-19	grid10.lal.in2p3.fr:2119/jobmanager-pbs-biomed	2006-03-25	Done (Success)	i
		grid10.lal.in2p3.fr:2119/jobmanager-pbs-biomed	2006-03-21	Done (Failed)	i
		ce1.egee.fr.cgg.com:2119/jobmanager-pbs-biomed	2006-03-23	Done (Success)	i D
		mu6.matrix.sara.nl:2119/jobmanager-pbs-medium	2006-03-21	Done (Failed)	i
	20Mars14h30-214-32Noeuds-16	mu6.matrix.sara.nl:2119/jobmanager-pbs-short	2006-03-25	Done (Success)	i D
	20Mars14h30-214-32Noeuds-15	mu6.matrix.sara.nl:2119/jobmanager-pbs-short	2006-03-21	Done (Failed)	i

PETSIM: Simulation of 3D PET images

Aims

- Demonstrate the feasibility to simulate realistic 3D and 4D (3D+time) Positron Emission Tomography (PET) images with the GATE Monte Carlo simulation platform
- Generate 3D and 4D PET databases of cardiac and small animal images for evaluation of image processing techniques such as segmentation and automatic detection

Methods

- Use the developments of accelerating techniques of GATE simulations and implementation on Egee grid performed by the GATE collaboration
- Define realistic imaging protocols based on numerical phantoms and modelling of evolving tracers biodistributions

- Simulation of 3D and 4D TEP images of small animal
- Simulation of 3D and 4D TEP cardiac images of human

Simulated 3D PET acquisition of the MOBY mouse phantom

4D model of a breathing human heart and thorax

CAVIAR: CArdio-Vascular Image Analysis on gRid

Aims

- Exploit the huge computing power of grid architectures in time consuming cardio-vascular imaging applications
- Grid aided Cardio-Vascular Diseases diagnosis and treatment
- Allow for large distributed studies on patients with CVDs

Methods

- Analysis of 3D+time image sequences
 - Cardio-vascular structure segmentation with physically based deformable models
 - Motion tracking from time constrained registrations

- MPI based application deployment on the grid
- Development of a web portal (image registration)
 based on the SIMRI web portal solution

CAVIAR: CArdio-Vascular Image Analysis on gRid

MR Image sequence

Estimated motion field

ThIS: Therapeutic Irradiation Simulator

ThIS is a Geant4-based simulator of the treatment of cancer by irradiation of a patient with beams of photons, protons or light ions (hadrontherapy).

In the context of the ETOILE project (http://www.projet-etoile.fr/sommaire.html)

Aims

- Offer an open platform for researchers for optimization of Monte Carlo simulations (fast navigation algorithms, parallelization, hybrid simulations...)
- Offer a fast and reliable simulation tool for researches in medical physics (treatment planning) and medical imaging for treatment control.

Produce a reference dataset (energy deposit, positron emitters distributions, ...)
 for non-conventional therapies (hadrontherapy).

- application deployment on the grid
- Collaboration with the Gate consortium

Contacts

F	B	e	let

H. Benoit-Cattin

P. Clarysse

L. Guigues

C. Lartizien

I. Magnin

C. Pera

fabrice.bellet@creatis.insa-lyon.fr

hugues.benoit-cattin@creatis.insa-lyon.fr

patrick.clarysse@creatis.insa-lyon.fr

laurent.guigues@creatis.insa-lyon.fr

carole.lartizien@creatis.insa-lyon.fr

Isabelle.magnin@creatis.insa-lyon.fr

christophe.pera@creatis.insa-lyon.fr

ThIS: Therapeutic Irradiation Simulator

ThIS is a Geant4-based simulator of the treatment of cancer by irradiation of a patient with beams of photons, protons or light ions (hadrontherapy).

Aims

- Offer an open platform for researchers for optimization of Monte Carlo simulations (fast navigation algorithms, parallelization, hybrid simulations...)
- Offer a fast and reliable simulation tool for researches in medical physics (treatment planning) and medical imaging for treatment control.
- Produce a reference dataset (energy deposit, positron emitters distributions, ...) for non-conventional therapies (hadrontherapy).

- application deployment c
- Dec. 07 : Web portal

