

Results of WISDOM and Deployment of Molecular Dynamics on EGEE infrastructure

Vinod Kasam CNRS - IN2P3

http://www.itb.cnr.it/bioinfogrid

WISDOM

Random screening approach

- First high throughput virtual screening approach on EGEE grid
- 500,000 compounds, 5+3 targets, 2 different software
- 1 TB of output

BioinfoGRID

- Several strategies for result analysis
- Identification of three scaffolds, one is novel

Chemical compounds ChemBridge ~500,000 Drug like 500,000

Strategies in result analysis

Results based on match information

Results based on consensus scoring

•Results based on different parameter settings

Results based on knowledge on binding site

							Te	rminal					- 0
Ð	e Edt		yjew	Termina	al s	20	Help						
SEI	LECTED	34,8	TCHE:	S: 1lee	h2.	rdf	1	lee_m	dn				
		+-						+	+			+	+
No	. Lig.	11	ig. []	Ligand		- 1	Rec.	Rec.	Rec	:. I	Rec.	Receptor	Opt.
1	Atoe	14	No.1	IA-Type			Atom	AA.	(Cha	in!	AANo	IA-Type	Engy.
		+-						+	+				+
	1 02	1	31	h_acc			watez	1			138	h_don	-2.70
	1 N1	1	14 1	h_don		- 1	water	1		- 1	169	h_acc	-2.70
1	1 014	1	22 1	h_don		1	satez	1			120	h_acc	-2.70
	1 C19	1	341;	phenyl_	cent.	teri	CD2	1778	1A.	- 1	77	phenyl_ring	-0.70
	1 C16	1	91;	phenyl_	cent	ter	C	THR	IA.	- 1	217	amide	-0.70
	1 C2	1	81	ch3_phe		- 1	CC.	TYR.	A.		192	[phenyl_center	-0.70
	1 C	1	11	phenyl_	cent.	ter	CE2	TYR.	A.	- 1	192	phenyl_ring	-0.70
	1 C20	1	35	phenyl_	ring	: 1	CC	TYR.	A.	- 1	77	[phenyl_center	-0.70
	1 C19	1	34 1	phenyl_	cent	erl	CD1	ILE	1A -		123	ch3_phe	-0.70
1	1 C19	1	341	phenyl_	cent	terl	062	ILE	IA.	- 1	32	ch3_phe	-0.70
	1 C13		511	phenyl.	ring	: 1	CC .	PHE	A.	- 1	294	phenyl_center	-0.70
	1 C10	1	41	phenyl_	ring	1	CC	PHE	A.		294	phenyl_center	-0.70
	1 C		11	phenyl_	cent	er	CG1	VAL.	A.	- 1	78	ch3_phe	-0.70
	1 C	1	10	phenyl_	cent	ter	CE1	PHE	A		294	phenyl_ring	-0.70
1	1 C16	i.	91	phenyl_	cent	ter	CE	MET	A.	1	15	ch3_phe	-0.70
	1 N3		2911	h_don		- 1	0	CLY	1A	- 1	216	h_acc	-4.70
i .	1014	i.	2213	h_don		1	001	LASP	IA.	1	214	h_acc	-4.70
	1 01		16	h_acc		- 1	CHEC	TYR	A.	- 1	192	h_don	-4.70
	1 026	1	1913	h_acc		- 1	N	VAL.	IA.	- 1	78	h_don	-4.70
ī -	1 N16	i.	20 1	h_don		1	0	CLY	A.	1	36	h_acc	-4.70
÷		÷.,							÷				

500, 000 chemical compounds

BioinfoGRID

50 compounds to be tested in experimental lab 26-10-2006, Geneva

Top 10 compounds by scoring in Parameter 1

BioinfoGRID

Compounds for MD - Thiourea compounds

BioinfoGRID

Compounds for MD - Thiourea compounds

BioinfoGRID

Compounds for MD - Urea compounds

1|C15

1|C15

1|N4

1|C20

1|C15 |

Note: Diphenyl urea compounds are well in agreement with literature (Walter Reed compounds)

BioinfoGRID

22|phenvl_center| CE2 |TYR |A

22|phenyl_center| CD1 |ILE |A

CG1 |VAL |A

ODI ASP A

CG |TYR |A

22|pheny1_center|

27|phenyl_ring

21|h_don

26-10-2006, Geneva

192 |phenyl_ing 78 |ch3_phe

192 |phenyl_center

214 h_acc

300 |ch3_phe

BioinfoGRID

Note: Guanidino compounds are likely to be novel, so far, not identified as inhibitors for Plasmepsins.

Compounds for MD - Guanidino compounds

BioinfoGRID

▼ Terminal = □ >											
Ei	le <u>E</u> e	lit	<u>V</u> iew	<u>T</u> erminal	Ta <u>b</u> s	<u>H</u> elp					
+	+	+	+			+	+	+	+	++	٠
No	o. Li	g.	Lig.	Ligand		Rec.	Rec.	Rec.	Rec.	Receptor	
1	At	om	ANo.	IA-Type		Atom	AA	Chain	AANo	IA-Type	
+	+	+				+	+	+	+	++	·
	1 N1		5	h_acc		water			58	h_don	
	1 N7		19	h_acc		water			39	h_don	
1	1 N7		19	phenyl_ce	enter	C	TYR	A	77	amide	
1	1 C7		13	amide		CG	TYR	A	77	phenyl_center	
1	1 C1	3	21	ch3_phe		CG	TYR	A	192	phenyl_center	
1	1 N1		5	pheny1_ce	enter	CE1	PHE	A	294	phenyl_ring	
1	1 N1	- 1	5	phenyl_ce	enter	CG2	VAL	A	78	ch3_phe	
1	1 N1		5	phenyl_ce	enter	CD1	ILE	A	300	ch3_phe	
1	1 N1	- 1	5	phenyl_ce	enter	CE2	TYR	A	192	phenyl_ring	
1	1 N1	- 1	5	phenyl_ce	enter	CG1	VAL	A	78	ch3_phe	
1	1 C3	- 1	3	phenyl_ri	ng	CG	PHE	A	294	phenyl_center	
1	1 N3	- 1	8	h_don		0G1	THR	A	217	h_acc	
1	1 N3	- 1	8	h_don		0D1	ASP	A	214	h_acc	
1	1 N4		10	h_don		0D1	ASP	A	34	h_acc	
1	1 N4	- 1	10	h_don		OD2	ASP	A	214	h_acc /	
1	1 N4	- 1	10	h_don		001	ASP	A	214	h_acc	
1	1 C1	2	20	phenyl_ri	ng	CG	TYR	A	77	phenyl_center	
1	1 N7		19	phenyl_ce	enter	CD2	TYR	A	77	phenyl_ring	
1	1 01	1	14	h_acc		N	VAL	A	78	h_don	
1	1 N6		12	h_don		0	GLY	A	36	h_acc	2
+	+	+	+			+	+	+	+	++	*

Note: Satisfied all criteria, good binding mode, interactions to key residues, good score, appropriate descriptors.

Compounds from consensus scoring

BioinfoGRID

Compounds for MD and their descriptors

BioinfoGRID

A	В	С	D	E	F	G	Н		J	К	L	м	N	0	P /	Q	R	S
WISDOM.	smiles	score	Atomcoun	Mass	Ring coun	Accsiteco	donorsitec	Aliphaticat	Chaincour	Fusedalipł	Heteroaror	naticringco	PSA	Aliphaticrii /	Aromaticri	LogP	TotoalC	Rotatabl
280991	c1c[nH+]c	-38.763	34	373.305	2	4	5	10	10	0	1	51.03	126.44	0	2	4.05	0.03	3
380406	c1ccc2c(c	-38.103	46	429.449	5	5	3	7	7	0	2	58.8	132.62	0	5	4.65	-0.05	3
378548	Cc1c(cc2c	-39.747	51	441.506	5	5	2	8	8	0	2	63.77	117.07	0	5	4.65	0.01	3
193748	c1ccc(cc1	-38.285	45	434.896	4	6	2	9	9	0	1	55.61	103.43	0	4	6	-0.04	4
242452	clcc(c(cc)	-40.407	46	454.887	3	10	3	13	13	0	0	60.08	148.14	0	3	5.09	-0.04	5
313614	c1cc2c(cc	-38.034	40	388.46	3	4	4	10	10	0	0	55.76	112.3	0	3	4.95	-0.06	3
312057	c1c(cc2c(c	-38.412	37	382.41	3	6	4	13	10	0	0	58.45	130.76	1	2	3.64	-0.04	3
384677	COc1c(cc	-39.681	54	489.974	4	7	3	12	12	0	0	61.04	111.55	0	4	5.89	0.04	5
310954	Cc1cc(c(c	-38.2	44	487.756	2	9	3	16	16	0	0	58.74	140.3	0	2	4.58	0	6
243118	Cc1ccc(cc	-37.174	50	403.498	3	5	3	11	11	0	0	55.78	102.32	0	3	5.55	0	4
382373	Cc1c(cccc	-37.633	51	439.51	5	4	3	7	7	0	2	62.63	113.39	0	5	4.86	0.01	3
385534	COc1c(cc	-37.723	52	471.507	5	7	2	9	9	0	1	64.07	113.16	0	5	5.21	0.04	4
372757	clcc(c(cc)	-37.082	43	468.324	4	5	3	8	8	0	1	54.79	119.48	0	4	5.39	0.04	3
373697	Cc1c(cc(c	-40.574	47	466.898	4	9	2	11	11	0	1	65.01	145.07	0	4	5.83	0.02	4
373762	Cc1c(cccc	-37.302	51	453.942	3	7	3	13	13	0	0	59.71	111.55	0	3	5.35	0.01	5
242449	Cc1cc2c(c	-38.131	50	446.48	4	8	2	11	11	0	1	65.29	145.07	0	4	5.12	0	4
492970	CCCCC(=	-39.791	56	435.54	3	6	3	15	15	0	0	48.55	111.55	0	3	5.06	-0.07	7
475515	Cc1c(cccc	-39.502	53	464.495	3	10	3	15	15	0	0	64.69	157.37	0	3	4.79	0.01	6
404128	Cc1n(nc(c	-37.418	56	470.544	4	6	2	11	11	0	1	61.98	117.34	0	4	5.76	0.03	6
326015	clccc(ccl	-38.106	46	420.442	3	9	3	12	12	0	0	56.09	148.14	0	3	4.57	-0.06	5
329771	clccc(ccl	-37.112	44	375.445	3	5	4	9	9	0	0	47.32	116.31	0	3	4.55	-0.06	4
386759	c1cc2c(cc	-39.937	49	443.479	4	8	3	11	11	0	1	58.25	147.72	0	4	5.5	-0.05	5
430276	clcc(cc(cl	-37.045	44	382.364	3	6	4	10	10	0	0	56.5	82.26	0	3	5.24	-0.05	4
313546	Cc1c(oc2c	-36.875	41	353.329	4	6	3	11	8	0	1	53.43	101.83	1	3	2.65	0.02	3
109865	Cc1c(cccc	-37.293	35	303.743	2	5	3	9	9	0	0	42.06	70.23	0	2	3.44	0.01	3
416361	clc(ccc(cl	-36.661	35	398.239	3	8	3	10	10	0	1	54.17	98.47	0	3	4.12	-0.02	3
120595	c1c(ccc(c)	-36.37	35	333.726	3	7	3	11	8	0	0	46.12	88.69	1	2	2.65	-0.02	3
437779	clcc(c(cc)	-36.029	32	415.613	2	5	3	9	9	0	0	40.76	70.23	0	2	3.96	-0.04	3
89351	C=C(c1c(c	-36.869	35	269.299	2	4	4	8	8	0	0	34.41	73.39	0	2	2.13	-0.06	4
178145	clcc(c(c	-36.123	31	325.15	2	7	3	9	9	0	1	42.32	83.12	0	2	1.52	-0.04	3
170421	c1c(cc2c(c	-35.821	34	300.27	3	7	3	10	7	0	1	42.59	101.58	1	2	0.82	-0.03	3
178319	Cc1ccc(cc	-36.553	42	313.351	2	5	3	11	11	0	0	46.48	79.46	0	2	3.13	0	4
170305	CC(=O)c1	-36.106	37	315.299	2	7	3	11	11	0	0	44.29	87.3	0	2	1.9	0	4
73901	CC1(OCC	-40.888	40	293.318	2	6	3	15	9	0	0	69.14	88.69	1	1	1.29	-0.01	4
81354	clcc(cc(cl	-37.093	31	290.705	2	6	3	8	8	0	1	38.26	83.12	0	2	1.66	-0.04	3
315095	Cc1c2c(cc	-43.098	55	472.923	4	8	3	12	12	0	1	61.19	100.19	0	4	4.92	0.01	5
462971	CCOc1cc	-45.625	67	568.631	5	12	4	18	12	0	1	72.37	174.69	1	4	4.87	-0.04	8
52923	Cc1cc(c2c	-44.035	47	349.41	3	5	5	10	10	0	1	54.28	104.53	0	3	4.11	0	2
261841	Cc1c2ccc	-43.119	55	440.477	4	6	5	11	11	0	1	63.13	122.01	0	4	4.6	0.04	3
300822	CCCc1[nl	-41.736	56	434.468	4	9	4	20	10	0	0	53.43	115.02	2	2	3.24	-0.07	4
305608	COC(=0)(-41.596	56	464.451	4	10	4	22	12	0	0	62.03	141.32	2	2	1.65	0.05	5
392786	c1cc2c(cc	-40.486	36	365.194	3	6	5	9	9	0	1	50.21	104.78	0	3	4.38	-0.04	2
316830	Cc1[nH]c(-38.111	48	412.849	3	9	4	17	11	0	0	53.29	105.79	1	2	3.32	-0.03	3
396606	Cc1nc(nc2	-37.822	46	392.455	4	8	4	8	8	0	1	54.39	117.95	0	4	3.76	0.04	2
17970	Cc1nc(nc(-37.727	37	286.313	2	7	5	9	9	0	2	44.02	117.42	0	2	-0.29	0.03	3
261841	Cc1c2ccc	-43.119	55	440.477	4	6	5	11	11	0	1	63.13	122.01	0	4	4.6	0.04	3
491148	Cc1[nH]c(-38.111	48	412.849	3	9	4	17	11	0	0	53.29	105.79	1	2	3.32	-0.03	3
49805	clcc(cc:	-39.53	36	326.287	3	8	4	9	9	0	1	48.85	138.57	0	3	2.89	-0.02	3
30030	CCn1c(nc	-18.408	43	306.385	4	2	2	5	5	0	2	42.14	48.92	0	4	3.8	-0.05	4

Overall approach

- Cost effective
- Data and knowledge sharing
- Possibility of novel compound identification
- Difficult to handle large volumes of data (Data management)
- Electrostatic Solvation parameters (MD)
- A work flow which continues on re-ranking
- Manual interventions are required at each and every step (Automation of the workflow)

- MD calculations are computationally expensive
- Several steps are involved
- Output of each step serves as input for the subsequent steps, so can be deployed on GRID (potential bottleneck: WMS)
- MM-PBSA method developed by Giulio Rastelli
- This method is faster and well validated for free energy calculations (10-15 mins per complex)

J.Med.Chem. 2005, 48, 4040-4048. Bernd Kuhn, Paul Gerber, Tanja Schulz-Gasch, Martin Stahl

BioinfoGRID

BioinfoGRID

- Fall 2006: re-ranking of WISDOM-I results using MD on EGEE
 - Top 1% corresponding to 5000 compounds using 2 different MD approaches
- End of 2006: 100 best hits for in vitro testing
- January 2007: Testing MD giving full flexibility to the protein (A computationally intensive approach of MD)

SCAI-Fraunhofer

BioinfoGRID

Marc Zimmermann

Astrid Maass

Horst schwichtenberg

Antje Wolf

Martin Hofmann

CNRS-IN2P3

Nicolas Jacq Jean Salzemann Yannick Legre ^{rg} Matthieu Reichstadt Florence Jacq Vincent Breton UNIMORE-ITALY

Giulio Rastelli

Anna Ferrari