

Enabling Grids for E-sciencE

H5N1 data challenge – status and results

Hurng-Chun Lee Academia Sinica, Taiwan

www.eu-egee.org

- The H5N1 data challenge
- The data analysis
- The interactive virtual screening on the Grid

The threats of H5N1

- H5N1 is high pathogenic
- H5N1 virus has the potential to cause a large-scale pandemic
 - K. S. Li et al, "Genesis of highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia", Nature, Vol. 430, 2004
- H5N1 may mutate and acquire the ability of drug resistance
 - Menno D. de Jong et al, "Oseltamivir Resistance during Treatment of Influenza A (H5N1) Infection", N. Engl. J. Med., 353:2667-2672, 2005

- Analyzing the efficiency of the known drugs to the possible mutations of the H5N1 virus
- Searching for new drugs
- Re-producing the Grid-enabled High Throughput Screening (HTS) following the first successful data challenge on Malaria
- Improving the reliability and efficiency of the Gridenabled HTS service, moving toward an end-user Grid application

The challenge

Millions of chemical compounds available in laboratories

High Throughput Screening 2\$/compound, nearly impossible

300,000 Chemical compounds: ZINC

Chemical combinatorial library

Target (PDB) : Neuraminidase (8 structures)

Molecular docking (Autodock) ~100 CPU years, 600 GB data

Data challenge on EGEE, Auvergrid, TWGrid ~6 weeks on ~2000 computers

In vitro screening of 100 hits

High-throughput screening using WISDOM

- WISDOM: Wide In-Silico Docking On Malaria
- The platform has been successfully tested in previous challenge
- · a workflow of Grid job handling: automatic job submission, status check and report, error recovery
- push model job scheduling + batch mode job handling

Interactive screening using DIANE

- DIANE: Distributed Analysis Environment
- An overlay system on top of a variety of distributed computing environment takes care of all synchronization, communication and workflow management details on behalf of application
- · A lightweight framework for parallel scientific applications in master-worker model
- Pull model job scheduling + interactive mode job handling with flexible failure recovery mechanism

The statistics

	WISDOM	DIANE
Total number of completed dockings	2 * 10 ⁶	308,585
Estimated duration on 1 CPU	88.3 years	16.7 years
Duration of the experience	6 weeks	4 weeks
Cumulative number of the Grid jobs	54,000	2580
Max. number of concurrent CPUs	2,000	240
Crunching rate	912	203
Approximated distribution efficiency	46 %	84 %
Approximated throughput	2 sec/docking	10 sec./ docking

- ~600 GBytes of docking results are produced and archived on the Grid
- ~83% were successfully completed according to the Grid Logging and Bookkeeping; only ~70% of results were really produced on the Grid storage element

The data analysis (1)

The data analysis (2)

Enabling Grids for E-sciencE

The most directive and simplest way is to just pick 1% after autodock

Issues in the current computing model

- coordinative way of executing the data challenge is not feasible for normal end users
- graphic interface allowing end users to intuitively configure docking parameters is not available
- dealing a huge amount of produced docking results is still timeconsuming

Leveraging on the DIANE framework, a web-based graphic interface was built to

- provide an intuitive interface for starting virtual screening on the Grid
- monitor the progress of the virtual screening
- visualize and summarize the completed dockings

The graphic user interface

Summary

- We have reproduced a Grid-enabled high-throughput screening fighting against the H5N1 virus
 - The 6-weeks activity has covered the computing requirement of over 100 CPU years
 - Two different computing models (WISDOM and DIANE) were adopted taking into account two different user aspects
- We have prototyped a web-based graphic user interface aiming at providing an easy-to-use system for end users to do interactive screening on the Grid
- We are in the process of the data analysis trying to filter out over 99% of the compounds step-by-step
 - the data challenge has helped to filter out 85%
 - the following steps are on-going

Credit

Enabling Grids for E-sciencE

Docking workflow preparation

- Contact point: Y.T. Wu
- E. Rovida
- P. D'Ursi
- N. Jacq

Grid resource management

- Contact point: J. Salzemann
- TWGrid: H.C. Lee, H.Y. Chen
- AuverGrid : E. Medernach
- EGEE : Y. Legré

Platform deployment on the Grid

- Contact point: H.C. Lee, J. Salzemann
- M. Reichstadt
- N. Jacq

Users (deputy)

- J. Salzemann (N. Jacq)
- M. Reichstadt (E. Medernach)
- L. Y. Ho (H. C. Lee)
- I. Merelli, C. Arlandini (L. Milanesi)
- J. Montagnat (T. Glatard)
- R. Mollon (C. Blanchet)
- I. Blanque (D. Segrelles)
- D. Garcia

Academia Sinica Genomics Research Center

