

Enabling Grids for E-sciencE

Grid Security Vulnerability Group

Post mortem of the Proxy Generation Tool Vulnerability

Romain Wartel, SA1
EGEE-II conference, Geneva, 2006

www.eu-egee.org

- Initialization of the process
- Expectations
- Reality
- Conclusion
- Lessons learned

- Akos Frohner risk assessment, software expertise
- Alain Roy VDT contact
- Andreas Unterkircher ia64 and tarball
- Di Qing Certification
- Ian Neilson initial coordination
- Joni Hahkala Security subsystem integrator
- Maarten Litmaath Everything
- Maite Barroso/Nick Thackray/Antonio Retico SA1 coordination
- Oliver Keeble: Integration/Certification/Testing/Release
- Robert Harakaly Meta rpms and build advice
- Romain Wartel Risk assessment, coordination and advisory
- Valerio Venturi Patch developer
- Vincenzo Ciaschini Package advice
- Other GSVG members General advices, comments and support!

Initialization of the process

Enabling Grids for E-sciencE

- Globus released a security advisory for GT3/GT4:
 http://www-unix.globus.org/mail_archive/security-announce/2006/08/msg00002.html
- Akos Frohner (GSVG) picked up the problem immediately and contacted GSVG
- It then took approximatively one week to:
 - Confirm that GT2 and VDT 1.2.x were affected
 - Realize that no patch would be available quickly for VDT 1.2.x
 - Discover all the LCG/gLite components affected by this bug
 - Understand that grid-proxy-init and myproxy-init were affected (but stealing proxy certificates was not possible)
 - Understand that voms-proxy-init was affected (and it was trivial to steal the proxy certificate of an arbitrary user)
 - Contact all the appropriate and available developers

- Problem was simple and the patch was easy to implement
- Testing would be easy, as the component does only one thing
- No configuration change necessary for the upgrade
- Developers, integration/certification/release team were taking the problem very seriously
- All appropriate people already in the loop

<u>Conclusion:</u> A few days should be sufficient to release updated components.

- VDT team incomplete and priority was to fix VDT 1.3.x first
- Several developers involved at different sites, which involved significant communications delay
- Lots of people involved and a massive email flow was generated
- Nearly all our node types were affected (in principle)
- Different versions of affected components on many nodes
- LCG 2_7_0 affected, but the LCG build system has been replaced by the gLite build system
- Some ia64 builds caused additional problems and delay
- Many people away in the integration/certification/release team
- Several requests submitted (GGUS, etc.) about the problem

- It actually took three weeks (in total) to release updated packages (two days before our "target date")
- We released our first security advisory
- Lots of people worked hard and overtime
- Maarten Litmaath handled the interactions with VDT/Globus, produced the patch and some packages, and some testing
- Oliver Keeble handled the build, integration, certification, testing, installation notes and release
- Good learning exercise

It is available from:

http://glite.web.cern.ch/glite/packages/R3.0/updates.asp

- It has been included in the release notes
- It has been sent to the LCG Security Contacts
- Disclosure timeline:
 - 2006-08-15 Vulnerability announced by Globus
 - 2006-08-16 Initial response from the Grid Security Vulnerability Group
 - 2006-08-16 Initial response from the VOMS developers
 - 2006-08-18 Initial response from the VDT developers
 - 2006-08-25 First updated sources received by the integration team
 - 2006-08-29 All updated sources received by the integration team
 - 2006-09-01 Updated LCG and gLite packages available
 - 2006-09-04 Certification and release preparation completed
 - 2006-09-05 Public disclosure

- The overall aim is to be able to produce a patch quicker in the future
- When necessary, patches should be prioritized (based on the middleware version, affected component, architecture, etc.)
- Coordinating the vulnerability process took a lot more time and efforts than initially expected
- The GSVG process is being changed accordingly
- Most people involved believe they will be able to complete their tasks much quicker next time

Enabling Grids for E-sciencE

- We identified the following roles regarding the risk management:
 - 1. Confirm the vulnerability
 - 2. Assess the risk of the vulnerability
 - 3. Produce an advisory
 - 4. Repeat 1. and 2. if new information is revealed
 - 5. Consult and advise WRT to the risk involved by the vulnerability ex: Should we delay exotic builds?

Enabling Grids for E-sciencE

- We identified the following roles regarding the vulnerability coordination:
 - 1. Reply and keep the reporter informed
 - 2. Call the RAT for an audit of the bug and receive the initial advisory from the RAT
 - 3. Contact OSCT if the vulnerability is rated "extremely critical"
 - 4. Enter a Savannah ticket (and its JRA1 mirror)
 - 5. Identify and establish contact with appropriate development and deployment teams
 - 6. Deal with requests from external groups
 - Establish contact and follow up with the integration/certification/release teams and pass them the advisory
 - 8. Ensure the process does not stall
 - 9. If there is suspicion no patch will be available to meet the target date, contact OSCT
 - 10. Publish the advisory