

Enabling Grids for E-sciencE

ESR Database Access

K. Ronneberger, DKRZ, Germany
H. Schwichtenberg, SCAI, Germany
S. Kindermann, DKRZ, Germany
J. Kraus, SCAI, Germany
J. Biercamp, DKRZ, Germany

www.eu-egee.org

- Data Requirements of ESR
- Example Climate workflow:
 - Access via Webservice-interface/Amga
 - Missing pieces
 - Future challenge
- Example Satellite Data:
 - Access via OGSA-DAI
 - Implementation
 - Evaluation

ESR Data Requirements

Enabling Grids for E-science

- Metadata and data bases are commonly large data sets, handled by different teams. The RDBMS generally used are MySQL, PostgreSQL or Oracle
- Many databases already exist the aim is the implementation of an interface with EGEE or at least to access a copy of them.
- If new bases are created on EGEE they need to be accessible outside Grid.
- Some metadata and data are only accessible to authorized persons. Others available on web site have rules for publications (acknowledgement, co-author).
- Many queries concern matching in time and/or space, expressed in geographical coordinates.

Typical climate workflow

What is needed

- A central metadata catalog based on common and standardized metadata schema
- Uniform data access interfaces with transparent AA policies

Grid-enabled climate data access

Enabling Grids for E-sciencE

Potential Impact

- Offering an alternative to current solutions for the daily workflows
- Additionally a common platform is provided to share data, tools and resources, supporting collaboration
- The common metadata scheme, based on international standards can be adapted/extended
 - by other disciplines
 - by International partners (discussion with NDG (GB) and ESG (USA) are ongoing)

- Registering of uploaded and processed files in Amga
- Grid-enabling the remaining data

Data Centers	Current Volume	Grid enabled
DKRZ Archive	~4 PB	~3 TB
WDCs (Climate/Mare)	~200 TB	~5 TB
IFM Geomar	~1 TB	~500 GB
DWD	~200 GB	
FUB	~1 TB	The r
PIK	~700 GB	rest is coming soon
AWI	~300 GB	oming
DLR	~60 GB	

Future challenges

- Feedback from EGEE to C3 (publish updated metadata of AMGA for the C3 portal)
- Mapping and interoperability of the AA infrastructures of EGEE, C3 and DBs
- Direct and transparent transfer of external files to, and registration in EGEE
 - That is, automatic selection of a close and free SE for storage

- The goal is to develop for a specific case a prototype that includes the needed tools:
- Example: Two different instruments: Ground-based Lidar, spectrometer aboard the satellite, ERS.
- The satellite data stored by orbit or pixel; different algorithms
- The Lidar data stored in monthly files with one profile/night

OGSA-DAI

Installed Environment at SCAL

- SL 4.1
- Web-Service Container: Tomcat 4.1.31
- OGSA-DAI OGSI 6.0 with GLOBUS 3.2.1 (TLS by Port 8443)
- Three different resources today
 - MySQL 4.1.10
 MySQL spatial extensions only support convex polygons
 - PostgreSQL 7.4.8 + PostGIS (production)
 PostGIS adds support for geographic objects to Postgres: http://postgis.refractions.net/
 - Oracle 10g (also for Bio Applications)

10

ES meta data clients : query

Enabling Grids for E-sciencE

ESR Data access- Genf 28.09.06

11

ES meta data clients

- straight forward installation by SCAI no integration
- fat client on nodes -- only for Authorisation (Globus)
- User Authentication
 - with grid proxy certificates
 - mapping to db roles for every user

<User dn="/O=GRID-FR/C=FR/O=CNRS/OU=IPSL/CN=David Weissenbach"
userid="lidar_writer"password="***" />

Enabling Grids for E-sciencE

Advantage:

- access to existing databases - nothing to convert
- out-of-the box installation
- easy to extend by own classes
- "quasi industrial standard"
- multiple resources with multiple services

Disadvantage:

- not fast
- scalable over the resources?
- not integrated in gLite