

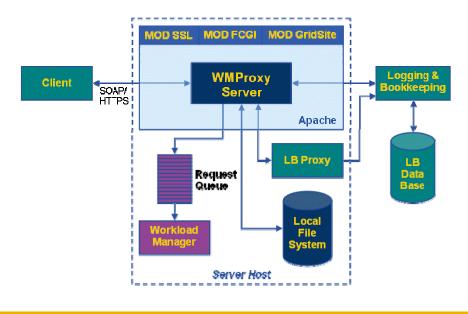
The ATLAS and CMS Experience with the gLite Workload Management System

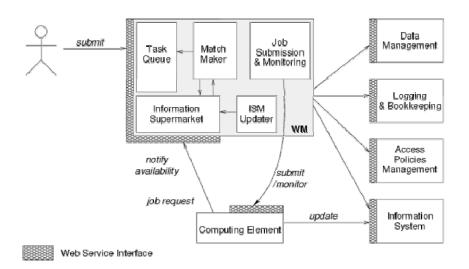
Andrea Sciabà Simone Campana

www.eu-egee.org

EGEE-II INFSO-RI-031688

EGEE and gLite are registered trademarks


- The gLite Workload Management System
- The experiment applications
 - CMS analysis
 - ATLAS Monte Carlo production
- Tests of the WMS
- Results
- Conclusions


egee

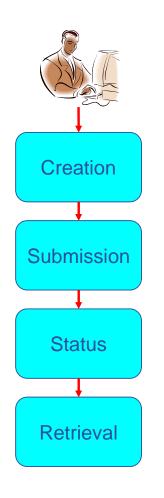
gLite WMS architecture

Enabling Grids for E-sciencE

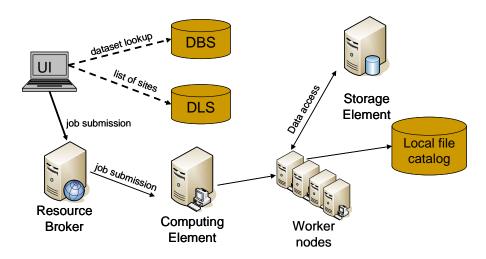
- The service to submit and manage jobs
 - Task queue: holds jobs not yet dispatched
 - Information SuperMarket: caches all information about Grid resources
 - Match Maker: selects the best resource for each job
 - Job Submission & Monitoring
 - Interacts with Data Management, Logging & Bookkeeping, etc.

- WMProxy service optimizes job management and stands between the user and the real WMS
 - Service Oriented Architecture (SOA) compliant
 - Implemented as a SOAP Web service
 - Validates, converts and prepares jobs and sends them to the WM
 - Interacts with the L&B via LBProxy (a state storage of active jobs)
 - Implements most new features

EGEE'06 Conference


egee

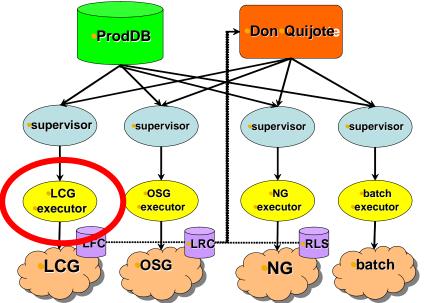
Enabling Grids for E-sciencE


- The gLite WMS offers several advantages over the old LCG WMS
 - Bulk submission
 - Direct Acrylic Graphs (DAG): sets of jobs with dependencies among them
 - Collections: sets of independent jobs
 - Parametric jobs: sets of jobs with running parameters in the JDL
 - Job sandboxes
 - Shared input sandboxes for a collection
 - Download/upload of sandboxes via GridFTP, https, http
 - Faster authentication via WMProxy
 - Faster match-making
 - Faster response time for users
 - Higher job throughput
 - "Shallow" resubmission of failed jobs
 - a job is resubmitted if failed before reaching the Worker Node
 - Greatly improves the job success rates
 - Job File Perusal
 - To inspect the job output while it is running

Tested CMS application

Enabling Grids for E-sciencE

eeee

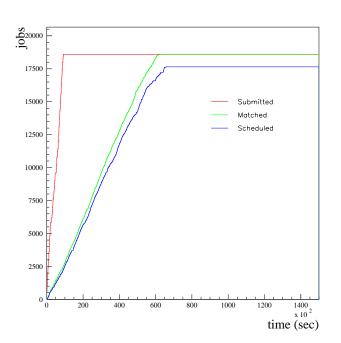

Analysis jobs with CRAB

- The user selects a dataset to analyze
- The analysis task is split into many jobs
- The jobs are submitted to sites hosting the data
- The jobs run the locally installed CMS application on the specified data files
- The user examines the status of the jobs and retrieves their output when they are finished

Tested ATLAS application

- Production of simulated events
 - A central database of jobs to be run
 - A "supervisor" for each Grid that takes jobs from the central database, submits them to the Grid, monitors them and checks their outcome
 - An "executor" acting as interface to the Grid middleware
 - EGEE/WLCG
 - Lexor using the gLite WMS
 - Condor-G direct submission

CMS Tests


- Job characteristics
 - Software: CMSSW 0.6.1
 - Data analyzed: test sample preinstalled at CMS sites
 - Approximate CPU time: 30'
- Job submission
 - Predefined number of jobs submitted at each CMS site
 - Various mechanisms tested
 - Network Server
 - Extremely similar to the old LCG WMS
 - WMProxy
 - Faster submission rate than via NS
 - Collections ("bulk submission")
 - Best possible submission speed
 - Submission in parallel from up to three User Interfaces

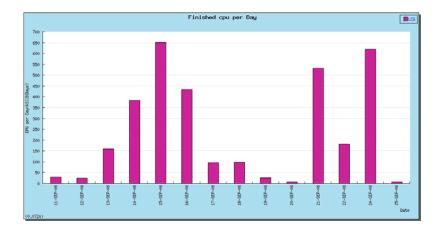
Latest CMS Results

Enabling Grids for E-sciencE

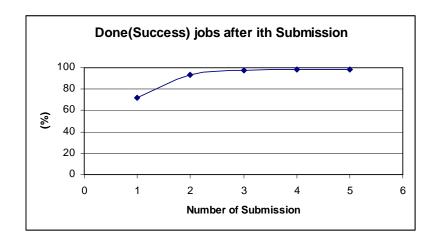
- ~20000 jobs submitted
 - 3 parallel UIs
 - 33 Computing Elements
 - 200 jobs/collection
 - Bulk submission
- Performances
 - ~ 2.5 h to submit all jobs
 - 0.5 seconds/job
 - ~ 17 hours to transfer all jobs to a CE
 - 3 seconds/job
 - 26000 jobs/day
- Job failures
 - Negligible fraction of failures due to the gLite WMS
 - Either application errors or site problems

Failure reason	Job fraction (%)
Application error	28
Remote batch system	3.9
CRL expired	3.3
Worker Node problem	1.1
Gatekeeper down	0.2

ATLAS Tests


- Used in <u>real</u> Monte Carlo production
- Job characteristics
 - Simulation
 - Approximate CPU time: 3 h
 - Simulation
 - Approximate CPU time: 20 h
 - Reconstruction
 - Approximate CPU time: 3 h
- Job submission
 - Bulk submission
 - The supervisor groups jobs to be executed in collections of 100 jobs each
 - Each job in a collection can run on a different site
- Also synthetic tests run
 - Very simple jobs ("Hello world") that can run anywhere
 - To study the impact of the shallow resubmission
 - To assess the reliability of the bulk submission

Latest ATLAS Results


• Official Monte Carlo production

- Up to ~5000 jobs/day
- Extremely low failure rate due to the gLite WMS
 - Over ~10000 jobs in the last 2 weeks, < 1% WMS-related failures

• Synthetic tests

- gLite WMS at least as reliable as the LCG WMS
 - Confirmed by CMS tests
- Shallow resubmission greatly improves the success rate for siterelated problems
 - Efficiency =98% after at most 4 submissions

- The gLite WMS has been seen so far to be as reliable as the LCG WMS
 - The shallow resubmission actually improves the success probability
- WMProxy allows to have a much better performance
 - +20% in submission rate for single jobs compared to Network Server
 - 0.5 s/job for bulk submission, compared to ~5 s/job for single job submission via Network Server
 - ~3 s/job to dispatch jobs to CEs
 - ~ 26000 jobs/day for the tested CMS jobs
- The performance and the reliability of the WMS has greatly improved over a short amount of time due to a very intense a fruitful collaboration among
 - JRA1 developers
 - SA1 and SA3
 - The CERN fabric people
 - The ATLAS and CMS experiments