International Telecommunication Union Regional Radio Conference and the EGEE grid

Andrea Manara

ITU-Radiocommunication Bureau Terrestrial Service Department

EGEE '06, 26/09/2006

Summary

- International Telecommunication Union (ITU)
 and the Radiocommunication Bureau (ITU-BR)
- Regional Radio Conference RRC-04/06
- The data and the planning process
- The computational problem
- The ITU-BR distributed computing system
- Experience with the EGEE grid
- Experience with Diane and MonALISA

ITU: oldest UN agency (17 May 1865) history

- Telecommunication Standardization Sector (ITU-T)
 - Production of standards covering all fields of telecommunications

ITU-T/OGF Workshop on Next Generation Networks and Grids (23-24/10)

- Telecommunication Development Sector (ITU-D)
 - Assists the Member States in development of their telecommunication infrastructures
- Radiocommunication Sector (ITU-R)
 - Management of the radio-frequency spectrum and satellite orbits for fixed, mobile, broadcasting and many other communication services

ITU-BR RRC-04/06

 Regional Radio Conference for the introduction of digital broadcasting in the UHF (470-862 MHz) and VHF (174-230 MHz) bands.

- RRC-04 (May 2004, 95 countries) established the technical basis (planning criteria and parameters) for the RRC-06 and defined the work for the intersessional activities
- Amongst the intersessional activities:
 - First planning exercise (28/02/05-> 15/07/05)
 - Second planning exercise (31/10/05 -> 28/02/06): Draft Plan
- RRC-06 (15 May-16 June 2006) established the new frequency plan in Geneva (120 countries, > 1000 delegates).
 This plan is part of a new international agreement.

The data

- Digital broadcasting requirements (~70 K)
 - T-DAB and DVB-T: many system variants (i.e. data capacity/reception modes) -> Reference Planning Configurations
 - Assignments (location and features of transmitter known)
 - Allotments (service area known) -> Reference Networks (number, location, power of transmitters) to approx.
 real networks
- Existing and planned analogue television stations (~95 K)
- Existing and planned fixed and mobile stations (~10 K)
- Administrative declarations (several millions)

The Planning process

Planning based on the protection of service area for assignments and allotments

- Compatibility analysis(*)
 - D2d, d2o-o2d

For each digital requirement:

- List of available channels
- List of incompatibilities
- Synthesis
 - Determine a suitable frequency for each requirement
 - to maximize the number of requirements satisfied
 - to avoid harmful interference
- Complementary analysis(*)
 - Determine which analogue assignments may suffer interference from the implementation of a given digital assignment or allotment
 - (*)Suitable to be run on a distributed infrastructure

 •K. Hunt

Planning software experts:

•T. O'Leary

■Propagation model for field strength prediction: ITU-R P.1546-1 (statistical model)

RRC06 outcome: GE06 Plans

GE06 Plans and related agreements

- Digital plan
- Analogue plan(*)
- List of other primary services

- •Rules for modifications to the Plans and for coordination of other primary services (Art.4)
- •Rules for notification of frequency assignments (Art.5)

(*) Transition period from analogue to digital broadcasting (17 June 2015 for most adm.)

Requirements satisfied (%)

	VHF	UHF
Iter1	64%	74%
Iter2	73%	85%
Iter3	84%	94%
Iter4	93%	98%

The percentage of requirements satisfied increased at RRC06 as Member States negotiated and formulated more compatible requirements.

ST61 (Europe) GE89 (Africa)

GE06

The computational problem

- Running compatibility and complementary analysis very CPU-intensive
- Very limited time to perform the calculation at the RRC06
 - Full scale calculation in < 1day
 - Smaller parallel regional area (CNG) runs during the week

First planning exercise (06/2005)

- CPU time: 90 days
- Elapsed time: > 1week!

After the first planning exercise:

- Look for more resources in BR
- Look for resources in EGEE

Safety for the RRC06: 2 independent systems

BR distributed computing system

ITU-BR developed system

- •Client-Server system
- •Windows services, Perl
- •UDP, XML-RPC
- •.NET C# GUI

- •Data deployment (~300MB) at client service start up (~15m.)
- •MD5 checksum
- Easily scalable

Credits: J. Boursy (ITU-R)

84 3.6 GHz PCs farm 168 parallel jobs (hyper-thread)

ITU cluster Montbrillant

Thanks to ITU-IS:

- infrastructure set-up (T. Arnold)
- support
- (S. Manandhar, J. Bhandary)

BR distributed computing system

Run ID	T Int (h)	T Elaps(h)	Jobs(#)
Iter1_1	752	6.1	18053
Iter1_2	621	5.9	26419
Iter1_2%	591	5.0	22085
Iter1_compl	415	3.0	17000
Iter2	463	4.1	22935
Iter2_compl	406	3.0	18984
Iter3	300	3.4	22935
Iter3_compl	361	2.8	4782
Iter4	205	2.6	21100
Iter4_compl	373	3.0	4774
	4487	38.9	179067

RRC06: 6.2 months running time ~180 K jobs run!!!

Experience with the EGEE grid

The work plan

- Feasibility studies and implementation (Oct., Nov. 2005)
 Direct submission to the Grid → too much overhead!
 Diane master-worker system to optimise the usage of resources
 Tests and refinements (Jan.-Apr. 2006)

- Verification of results quality (porting):
 Result files comparison between EGEE (Linux) and ITU (Windows) resources
 Full-scale test with Draft Plan data (Feb. 2006), ~30k jobs

Grid Infrastructure

- Safety-> Extra Redundancy
 3UIs: 2 at CERN(both used), 1 in Madrid (not used)
 2 dedicated RBs: all used

Experience with EGEE grid

Software Distribution

 Tarball installation in the site software area (~350 MB, soft.+ data, Md5 checksum)

CERN responsibilities:

- Consulting in GRID technologies
- Online support before and during the Conference
- Preparation of scripts for easy operation of the GRID by ITU personnel

ITU responsibilities:

- Providing tarball
- Operation of the system

on ALISA

Participating institutions

- •CERN
- •INFN-CNAF Bologna for E-science (+ sites of GridIT infrastructure)
- •PIC Barcelona, CNB Madrid
- •DESY (Hamburg, Zeuthen)
- Cyfronet Krakow
- Moscow State University

Experience with EGEE grid

- Diane operational modes
 - active
 - start submitting jobs to EGEE when the software is ready and installed
 - conserving resources but larger latency
 - - submit jobs to EGEE in advance and wait until the software is ready and installed
 - jobs are idling but response time is faster

(K.Moscicki poster n. 228 User Level Scheduling for improved Quality of Service in the Grid

Source: J.Moscicki EGEE-II INFSO-RI-03 1688

Diane Applications

- 1) Data Analysis in High Energy Physics (Atlas)
- 2) Geant 4 Simulation in Low Energy Physics (e.g. medical apps, radioprotection, small detectors on spacecrafts)
- 3) Geant 4 Regression Testing
- 4) Bioinformatics (BLAST, Autodock) e.g. Avian Flu Drug Search (see presentation on EGEE conference by H.C.LEE)

System Integration

Two complementary systems:

- -Dedicated resources for fast response -EGEE grid for maximum performance
- -We have demonstrated the possibility of a seamless integration (could be interesting for other applications)

MONitoring Agents using a Large Integrated Services Architecture (Monalisa)

- •ApMon Perl module to send UDP packets to the MonALISA service
- •2 ITU clusters monitored with EGEE GRID sites!

Conclusion

- A key ingredient for the success of the ITU Regional Radio Conference RRC-06 has been the capability of performing complex calculations in a very limited amount of time.
- Two independent distributed systems have been used at the RRC-06 Conference
 - The ITU-BR system on a local cluster
 - The EGEE infrastructure
- EGEE insured adequate support for an important CPUintensive international event and opened the possibility to allow faster and more detailed studies during the Conference

Conclusion

- EGEE: 'on demand' Grid computing for the ITU-RRC06
- EGEE guaranteed safety for the RRC06: cross-checking results
- User Level Scheduling EGEE Grid with Diane allowed successful run of ITU application (high QoS requirements)
- ITU: new user community integrated very quickly into the grid (ITU staff was trained to be autonomous in a short time)
- ITU personnel performed most of the operations (but required often expert support)

Acknowledgment

CERN: K. Moscicki, P. Mendez, A.Muraru, M. Lamanna ITU-BR: D. Botha, M.Cosic, T. Gavrilov, P.Hai, A. Manara

Press releases:

- •Digital broadcasting set to transform communication landscape by 2015
- EGEE helps achieve international digital broadcasting agreement