

Enabling Grids for E-sciencE

ETICS Early Adopter

Laurence Field EGEE '06

www.eu-egee.org

- Wrong place wrong time ©
 - Needed to migrate code from LCG to EGEE
- Developer
 - Information system components
- Integrator
 - YAIM development/component writer
 - R-GMA during EDG
- Release Preparation
 - LCG releases
- Site Maintainer
 - CERN-CIC
- Different methodologies
 - EDG
 - LCG
 - EGEE
- Focusing on the ETCIS build system
 - Critical part of release preparation

No Build System

- No build system at the beginning of EDG
 - Developers developed
 - Component specific integrators built binary packages
 - Integration done with binary packages
- Pros
 - No hassle for developers
- Cons
 - Large overhead for component specific integrators
 - Building packages by hand
 - Time consuming and error prone
 - Each needs to be an expert builder and packager
 - Lack of guidelines did not help
 - Integration nightmare
 - Packages built against different dependencies and platforms
 - "Works okay on my machine"
 - Different runtime dependencies
 - Packages managed by hand

EDG Build System

- Also Used by LCG
- All packages built on a build machine
 - Reduces build and run-time dependency problems
- Common targets called
 - Ant or Make
 - Component dependency solved by build order
- Pros
 - Reduced build and and runtime dependency problems
 - Developers could kick of an auto-build on the build machine
 - Package available and tested before patch submission
 - Even on emergency timescales

Cons

- Knowledge of packaging still required
- Only built Latest Tag and HEAD
- Difficult to manage complex dependencies
 - Working on future code for a new VDT release
- Lag time porting to other platforms

GLite Build System

Used ant

- Multiple xml files
- Well defined targets

Pros

- Build information tagged with code
- Automatically packaged code

Cons

- "It's a bit of a monster"
- Very ridged structure
- Difficult to follow through multiple xml files
- Very little useful document for such a complex system
- Needed specific build operator
 - For release builds
 - Final packages not available until after patch submission

Etics Build System

Enabling Grids for E-sciencE

All the build meta-data is stored in a database

- Web based tool to browse and manipulate data
- Clients which use the data to build
- Integration with NMI to do remote builds on different platforms

Pros

- Freedom of VCS and build method
- Automatically package
 - For different platforms
- Specifies dependencies per platform
- Build against source or pre-compiled binaries
 - Speeds ups simple builds and bug fixes
 - Can treat everything as an external component
- Can enable remote builds
 - Simultaneous build on multiple platforms using NMI
 - Can easily add unusual platforms to a standard build

Cons

- Its New
- Metadata not tagged with CVS
- Dependent on the database

Early Adoption

GLite or ETICS

- Why move to a build system that was going to be replaced?
- Wouldn't it be less effort to do it once rather than twice?
 - Not if you are an early adopter
- Started moving a component in February
 - Successfully built the component in August!
- Initial impression, March
 - Plan didn't look so bad
 - Meta-data in database rather than Ant build xml files
 - Components existed in various forms
- First trial, April
 - Client code ran
 - Found some bugs ©

Early Adoption

Missing Edit Function, May/June

- Unusable without this
 - Don't want to overload the ETICS team with requests
- Expected July
- Successfully Built Package, August
 - And submitted for integration
 - Using the new Software Process ©
 - Package rejected due to a bug in the software ②
- Experience documented in CERN twiki
 - http://twiki.cern.ch/twiki/bin/view/EGEE/EGEEDevelopersGuide
 - So I don't forget what to do
 - For others to gain a head start
 - Input for developers guide

Very Quick Start Guide

- Gain write access to ETICS
 - Send an email to someone who can do this
- Set up an ETICS workspace
 - Download the ETICS workspace setup script with wget
 - Run the ETICS workspace setup script
 - Set ETICS_HOME and add the command dir to your PATH
- Download the project
 - etics-get-project org.glite
- Add a subsystem
 - etics-module add --parent org.glite --subsystem subsystem
- Add a component to a subsystem
 - etics-module add --parent subsystem --component component
- To edit subsystem or component metadata
 - etics-module modify subsystem/component

Very Quick Start Guide

Enabling Grids for E-science

- Add a configuration to a component
 - etics-configuration clone -m org.glite.subsystem.comonent org.glite.subsystem.component.HEAD org.glite.subsystem.component_R_x_y_z
- Modify metadata in a specific configuration
 - etics-configuration modify -m org.glite.info.generic configuration
- To build locally, the code will need to be checked out first
- To check out a specific configuration
 - etics-checkout -c org.glite.subsystem.component_R_x_y_z org.glite.subsystem.component
- To do a local build
 - etics-build org.glite.subsystem.component
- To do a remote build
 - etics-build --remote org.glite.info.generic_R_x_y_z

ETICS Status

- The build system architecture seems sensible
 - Use may show areas for improvements
- Components Exist
 - Bugs are normal for new code
 - Requires use to find bugs
 - Use Savannah if you find any
 - http://savannah.cern.ch/projects/etics
- It is possible to use ETICS to build a component
 - Simple to add a new component
 - Glite components have been added automatically
 - Straight forward to use
 - Packages end up in the package repository
 - Build reports available

Advantages for SA3 and JRA1

Enabling Grids for E-science

- Developers can easily work on different branches
 - In different workspaces with different dependencies
 - Bug fixes can be built against pre-compiled binaries
 - No more complete rebuilds for a one-line fix ©
- Subsystem Integrators can easily build packages
 - On multiple platforms
 - Can test the packages internally BEFORE path submission
 - Easy visualisation and manipulation of build meta-data
- Porting
 - One official repository for all packages
 - For multiple platforms
 - Simultaneous builds on multiple platforms
 - Removed lag time from official release to ported release
- Release Preparation
 - Repository full of packages
 - Before patch submission
 - Database full of meta-data

- All gLite code needs to be managed using ETICS
 - If we are to receive the benefits
- Requires everyone to start using it
 - No more gLite build system ©
 - Good Quality Documentation and Tutorials are needed
- Patch submission
 - Component configuration tag
 - Package from the ETICS repository
 - Should be a condition for acceptance
- Porters need become more involved
 - Adding remote machines for new platforms
 - Would also need to join Certification Testbed as a remote site
 - Analysing the build reports per platform
 - Submitting build about build problems

Summary

- ETICS build system architecture seems pretty good
 - And I have used it and seen it working ©
- Beware that it is new software
 - Major functionality is working
 - But bugs will always show up
- Should be straight forward to use
 - Especially if there is some good documentation and tutorials
- Has the potential to bring many benefits
 - Porting being one of the main areas
- Requires everyone to start using it
 - If we are to see the benefits
- Try it, Use it and Give feedback