Enabling Grids for E-sciencE

 Workflows in Fusion applications

 Workflows in Fusion applications}

José Luis Vázquez-Poletti
jlvazquez@fdi.ucm.es
Universidad Complutense de Madrid, Spain on behalf of

Francisco Castejón
Coordinator of fusion activities in EGEE-II
(francisco.castejon@ciemat.es)
CIEMAT. Madrid, Spain.
милтва
DE EDUCACION
Y CIENCIA
Cionot

- What are we going to see?

Young Activity... EGEE II - only 5 months old!!!

Real applications ported - SIMPLE ones but... 3!!! Different options considered for each app

Workflows: Why we are here ©
www.eu-egee.org

Ce Fusion? Why Fusion? Enabling Grids for E-sciencE

Energy Input < Energy Output

eєee
 Kinetic Transport

Example of orbit in the real 3D TJ-II Geometry (single PE).
Collisions included: 1 ms of trajectory takes 4 sec CPU .
Particle life: 150-200 ms. Single particle ~ 10-20 min. $10^{6}-10^{7}$ particles needed.

Kinetic Transport

- Monte Carlo code that solves microscopic Langevin Equations for every ion, including:
- the movement inside the magnetic and electric fields created by the magnetic confinement device and the plasma.
- random term to simulate collisions with the background plasma.
- The particles are distributed randomly in the plasma according to experimental results:
- The spatial distribution of particles is done accordingly to plasma density.
- The distribution of particles in momentum space follows a Maxwellian distribution function according to the measured temperature (which astonishingly happens to be almost constant).
- Estimate every trajectory independently in a single CPU (about 10-20 min of elapsed time).

Kinetic Transport

- Every case (particle) needs:
- A seed for random space distribution.
- A seed for random momentum distribution.

- An initial seed for collisions.
- The background plasma is common for every particle:
- Background density and temperature, i. e., collisionality.
- Background electric field.
- Background magnetic field and magnetic configuration.

Registered at the LFC FUSION VO data catalog

- $\sim 10^{7}$ particles launched in bunches of about 10^{3} to be run in every CPU.
- Post process. Statistical measures: Fluxes, velocity distribution, space distribution, etc.
- No problem if some (few) cases are lost.

(GeP) MaRaTra: Massive Ray Tracing

Beam
Simulation:

Bunch of rays with beam waist close to the critical layer (100-200 rays) x (100-200 wave numbers) $\sim 10^{5}$

Single Ray (1 CPU):
Hamiltonian Ray Tracing Equations.
Application in production phase. Gridification based on Gridway: Stand at this conference (Demo@n.23) by J.L Vázquez-Poletti et al. UCM (Spain)

- A single ray is solved in every CPU: Hamiltonian Equations.
- The rays are distributed accordingly to the microwave beam structure: Every case needs:
- Initial space position.
- Wave vector.

Input parameters

- The background plasma is common for every particle, therefore it can be downloaded from a close Storage Element:
- Background density and temperature.
- Background magnetic field and magnetic configuration.
- ~105 rays launched.
- Post process: Spatial Distribution of absorbed power (add all the absorbed powers of the single rays).
- No case must be lost, all the results are necessary. This is one reason for using the GridWay metascheduler.
- Grid application profile = Parameter sweep app

\uparrow Conventional: field maximums mirror some part of the ions, so they "shift out" of the surfaces
Optimisation: make magnetic field more symmetric $\downarrow \rightarrow \uparrow$

V. Voznesensky. Kurchatov Institute. Russia

Plasma devices optimisation

- Every Stellarator simulated by a set of Fourier coefficient that defines its properties (Equilibrium). Typically 100 Coeff.
- These coefficients are varied randomly and the properties of every configuration are estimated in every single CPU.
- A genetic algorithm is used to extract the optimum configuration.
- Weight functions are fixed as criteria for choosing the best configurations:
- Equilibrium,
- Stability
- Neoclassical transport properties.
- The elapsed time for every calculation depends on the weight functions.

Typically 40 min per case.

- So?
- Early application porting: VERY SIMPLE Workflow needs
"Step by step the way is done" - Antonio Machado (Spanish writter)
- In the future?
- Happy users = New applications to be ported!
- New applications to be ported = MORE COMPLEX Workflow needs!
- Workflow needs are yet to come...

Wait !!! More requirements are coming!

eGee)
 Enabling Grids for E-sciencE
 THANK YOU VERY MUCH!!!

