

From Web Services to Grid: Internal ad esternal use

Piero Poccianti

Staff Pianificazione e Sviluppi Strategici Consorzio Operativo Gruppo MPS

Agenda

From Web services to Grid

Introduction

2001 → SOA Architecture

2003 → web services examples

2005 → Internal Grid solution and applications

2006 → Evolution

Il Gruppo MPS

Employes: ≈ 27.000

Retail Banking

1.886 Domestic Branches

2.180 ATM

66.930 POS

Banks

Foreign presence

❖ 33 Branches and Offices

Corporate Center

Products company

Service Company

Il Consorzio Operativo GMPS

"Il consorzio ha il compito istituzionale di gestire i sistemi informativi ed i servizi amministrativi, accentrati e non, nell'ottica della centralizzazione dell'informatica e dei servizi amministrativi stessi a livello di gruppo bancario M.P.S., fornendo supporto alle più generali strategie di gruppo, in coerenza con le esigenze di evoluzione tecnologica del gruppo stesso e degli altri consorziati"

Art. 2 Statuto del Consorzio

Le aziende consorziate:

Banca Monte dei Paschi di Siena

Banca Toscana

Banca Agricola Mantovana

MPS Banca Personale

MPS Leasing & Factoring

MPS Gestione Crediti Banca

MPS Finance

Agenda

From Web services to Grid

Introduction

2001 → SOA Architecture

2003 → Web Services examples

2005 → Internal Grid solution and applications

2006 → Evolution

Broker

Infrastructure

Partners: Microsoft & IBM

Agenda

From Web services to Grid

Introduction

2001 → SOA Architecture

2003 → Web Services examples

2005 → Internal Grid solution and applications

2006 → Evolution

Web Services since 2001 →

- Virtual POS
- Financial Desktop
- Selling MPS NET' product
- Insurance simulation: MPS VITA
- Interactions for "Loans" BanKs ⇔ Consum.it
- Unix Private Banking ⇔ multichannel
- Corporate Banking
- CERVED services
- "Mandati:Reversali" with digital signature
- New Channel for multichannel
- •

Smart Client - IBM vision

Mainframe

- IBM Tivoli Workload Scheduler
- CICS (PAF) Batch TP
- Flows Converter (BTS)
- GRID (AGA)

Agenda

From Web services to Grid

Introduction

2001 → SOA Architecture

2003 → web services examples

2005 → Internal Grid solution and applications

2006 → Evolution

Our Definition of "Grid Computing"

Internal Grid is a specialized workload management system for specialized compute-intensive jobs. Like other full-featured batch systems, it provides a job queueing mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users submit their serial or parallel jobs to Grid, It places them into a queue, chooses when and where to run the jobs based upon a policy, carefully monitors their progress, and ultimately informs the user upon completion.

Our Tactical Approach

- Internal Grid uses server and client idle resources
- Its application domain is for CPU intensive tasks, not for data intensive ones
- Task must be composed by slightly correlated subtasks

Accomplishments

- Current Accomplishments
 - Clickstream analysis (January 2005)
 - IAS 32-39 (August 2005)
 - Top Management Monitoring (January 2006)
 - Basel II (Algoritmics) (October 2005)
 - DOC1 (December 2006)
- Next Steps
 - Host Batch downsizing

—

MPS Internal Grid

- Use idle resources for CPU intensive jobs
- Interaction with heterogeneous systems (desktops, servers, dedicated server farms or even Host) by means of standard or standards-to-be protocols.
- Evolution from Condor to a custom solution developed with Avanade
- Communication between nodes is performed using Web Services

Gartner's vision on Grid Computing Source Gartner 3 Ago 2005

Figure 1. Hype Cycle for Emerging Technologies, 2005

The Grid

Computing power is everywhere, we try to make it usable by anyone.

Miron Livny

- **❖** Average Mainframe usage: 80%
- **❖** Average RISC Servers usage: 45%
- **❖** Average Intel Servers usage: 10-15%
- **❖** Average Client usage: lower than 10%
- ❖ Year 2008 will see a doubling in usage of Servers

Source: Gartner

Server usage will further increase in the future

There's a lot of space in the bottom
Richard P. Feynman

Realizations

AGA.NET Architecture

- Developed as a joint effort with Avanade
- Characteristics
 - Secured
 - Extendable
 - Web Services as glue
 - Easy to develop upon it
 - Easy to maintain
 - Implemented using C# .NET
- Advantages:
 - Costs (perceived)
 - Fast processing

Server farm

- About 200 non-dedicated Windows and Linux servers
- We expect to have 1.000 central servers with Windows 2003 Server

Realizations

- Clickstream analysis
 - In production since the start of the year
 - About 50 sites
 - 476 instances on single servers

Job entity valued in 2-4 CPUs servers working for 8 hours

The same job requires 2 hours of our Grid infrastructure

Phase I. Open Source + Condor

Phase II. Open Source + AGA

Phase III. SQL Server (AS) + AGA

IAS 32-49

- First hypothesis on Mainframe (Cobol+ DB2)
- Realization with GRID (Cobol + AGA + SQL Server)
- In production since July 2005
- Elaboration timings less than 1 hour

Basel II

- Chosen the Algorithmics's (Unix/Linux and Oracle) for Market Risks Analysis Job
- Proposed a SUN machine or a Grid DataSynapse
- Solution based on AGA.NET (on Windows Servers) with Linux nodes (we are discussing the porting of Algoritmics on Windows), including data loading
- in production since 2005' end

Top Management Monitoring

Datawarehouse for compliance

- First implementation dedicated scheduler and machines
- Today Grid scheduler......

Microsoft Reporting Services

loading data with Grid

Generation of documents for Customers

- Developed DOC1 for Host
- Effort estimated: 6 days of elapsed working time (of a 8.000
- MIPS machine).
- Today the first bank in production on GRID (6 hours on mainframe, 2 hours on Grid- few machines).

Conversion of Batches on Mainframe

- Currently testing the porting of Batches
 - PL/1
 - Cobol

Agenda

From Web services to Grid

Introduction

2001 → SOA Architecture

2003 → Web Services examples

2005 → Internal Grid solution and applications

2006 → Evolution

Grid Services

- Web Services allow integration of heterogeneous systems to achieve A2A communication and for short-term transactions, involving the exchange of relatively small quantities of data.
- Grid Services will allow integration for more significant jobs, considering the CPU usage and also the quantity of data.
- GRID vision allows the network to evolve to an environment in which machines and human beings can collaborate.
- Three instances:
 - Internal grid computing
 - Ethic and Scientific projects
 - A global vision

Mainframe downsizing

- On line TP Scale Out Scalability
- ■HPC useful for a lot of complex multistep task
- Internal Grid very useful for distributed batch processing

- We are exploring new area:
 - New application in Finance Area,
 - Integration of grid computing and HPC paradigm,
 - Grid services for job invocation Corporate
 Banking services

« Croire tout découvert est une erreur profonde, c'est prendre l'horizon pour les bornes du monde ! »

Camille Flammarion

- Information technology is not only support for business.
- It's changing our way of learn, exchange knowledge, buy, work, etc.

Thank you

Piero Poccianti Staff Pianificazione e Sviluppi Strategici Consorzio Operativo Gruppo MPS

piero.poccianti@bancatoscana.it

