

Project Objectives

- Establish Horizontal and Vertical integration of data, information and knowledge for Paediatrics
- Develop a grid-based biomedical information platform, supported by sophisticated and robust search, optimisation, and matching techniques for heterogeneous information,
- Build enabling tools and services that improve the quality of care and reduce its cost by increasing efficiency
 - Integrated disease models exploiting all available information levels
 - Database-guided decision support systems
 - Large-scale, cross-modality information fusion and data mining for knowledge discovery
- A Knowledge Repository for Paediatrics?

Project General Info

- Instrument: Integrated Project (IP) of the Framework Program FP6
- Project Identifier: IST-2004-027749
- Coordinator: Siemens AG, Dr. Jörg Freund
- Partner: 14 European (companies, hospitals, institutions)
- Timetable: 01-Jan-06 to 31-Dec-09 (4 years)
- Total cost: 16.7 Mio. €
- EC funding: 12.2 Mio. €
- Web page: <u>http://www.Health-e-Child.org</u>

Project Map

Health-e-Child

Clinical Context

Diseases

- Heart diseases (Right Ventricle Overload, Cardiomyopathy),
- Inflammatory diseases (Juvenile Idiopathic Arthritis), and
- Brain tumours (Gliomas)

Clinical Institutions

- I.R.C.C.S. Giannina Gaslini (IGG), Genoa, Italy
- University College London, Great Ormond Street Children's Hospital (GOSH), London, UK
- Assistance Publique Hopitaux de Paris NECKER, Paris, France

Clinical Departments

- Cardiology
- Rheumatology
- (Neuro-)Oncology
- Radiology
- Lab (Genetics, Proteomics, Lab)
- Administration

Clinical Data Integration

- Heterogeneous Data/Imaging Sources
 - Database Backends: from simple MS ACCESS to complex Patient Information Systems like TOMCAT, RIS ...
 - No or few linkage bw department's IS
 - Various imaging modalities
 - i.e. MRI, CT, US, X-Ray...
 - Various imaging devices
 - i.e. Siemens Bi-Plan, GE Vivid7, Sequoia, HP128...
- Heterogeneous Connectivity
 - PACS not yet present in all Hospitals/Departments
 - Hospitals have different Hardware/Network/Security constraints
- Acquisition of large samples of Imaging data
 - 3 diseases X 300 cases X 2 modalities X 300 images
 - i.e. at most 540000 images

David Manset, EGEE 2006, 25. September 2006

Approach (2)

- An Domain Specific Stack of Services: the <u>HeC Gateway</u>
 - To <u>decouple</u> client applications from the complexity of the grid and other computing resources
 - Towards a <u>platform independent</u> implementation
 - To expose the medical functionality
- Grid primarily used as a "Distributed PACS"
 - Uses cases might evolve in the near future (especially with griddification of applications)
- A Dedicated Test-bed for Security & Privacy reasons

Early Faced Issues

Mainly Non-Functional since project has just started

- Selecting grid m/w services wrt project requirements •
 - Lots of services/functionalities available
 - Different implementations with different levels of maturity
 - => First cut based on URS + Grid Questionnaire
- Clustering grid m/w services .
 - To reduce the h/w requirements & maintenance (1 server / Hospital)
 - To facilitate deployment (3 clinical sites + at least 5 institutional sites)
 "Xenification" of OSs + clustering services wrt functionality
- Decentralisation of grid m/w services •

 - Sites need to be as much as possible autonomous
 Investigation of possible Master/Slave configurations
- "Griddification" of Applications •
 - Some of the HeC applications might be "griddified"
 - => Requires further investigations

Conclusion (1)

Middleware Requirements

Non-functional Requirements (gLite)

- Hospital Sites should be <u>autonomous</u>
 - Sites should not depend on any central services
- Hardware requirements remain too high for Hospitals
 - Getting access to the grid through one box would be ideal
 - e.g. 1 Server per Hospital

Functional Requirements (gLite - HealthGrid)

- <u>Pseudonymisation</u> as a native middleware service?
- Native <u>Streaming</u> facilities for sharing large DICOM files
- [Native <u>patient-centric</u> data model(s)
 - (flexibility) Optionally data model could be selected from existing standards (e.g. HL7...) or even created from scratch
 - (interoperability) Optionally a native commodity for exporting/exposing data through different data models would be nice (model-driven)
 - (interoperability) Optionally a data model (schema) discovery mechanism could help
- Native connectors to external backends for batch data integration]

Conclusion (2)

1st Technical Accomplishments

- Establishment of a Common Development Environment
 - Indispensable to synchronise partners and leverage synergy
- Creation of the Health-e-Child Virtual Organisation (VO)
 - Establishment of the HeC Certificate Authority
 - HeC VO Structure in place, being tested
- 1st gLite Test-bed deployed in May 2006
 - ~20 computers involved
 - Being refined according to project requirements and extended to Hospitals
- 1st embryo HeC gateway
 - Authentication Client Application & Grid Service (VOMS enabled)
 - HeC Portal & Factory (exposing domain specific functionality)