
EGEE-II INFSO-RI-031688

Enabling Grids for E-sciencE

www.eu-egee.org

EGEE and gLite are registered trademarks

IPv6 code checker tool

Salvatore Monforte (INFN CT)

EGEE 6, 25-29 September 2006, Geneva

EGEE’6 conference, 25-29 September 2006, Geneva 2

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Outline

• IPv6 reccomendations for developing
“IPv6 ready” applications

• gLite WMS code “porting” impact

• glite IPv6 code checking tool

EGEE’6 conference, 25-29 September 2006, Geneva 3

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Moving to IPv6

• Changing the network address data
structure has a major impact on all
aspects of IP inter-networking
– developer point of view

as first stage of transition we can start following
few simple recommendations in order to

• move to “IPv6-ready” application while still
running them on IPv4-based network

o such “IPv6 ready” applications can function both
in IPv4 and IPv6 environments

o migration to a pure IPv6 network without any
modification to the application

EGEE’6 conference, 25-29 September 2006, Geneva 4

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Moving to IPv6

• Impact of the UnixWare IPv6 implementation involves
the following issues:
– IPv6 data structures and functions

new data structures required to hold the larger IPv6 address
• in6_addr, sockaddr_in6

new and modified network API functions
• IN6_IS_ADDR_V4MAPPED, gethostbyname2,

getaddrinfo, getnameinfo, etc etc
– Address and protocol families

new address and protocol family constants
• AF_INET6, PF_INET6

– Intercommunication between applications
within a mixture of IPv4 and IPv6 applications running on the
same host passing open sockets is more complicated

• IPV6_ADDRFORM

EGEE’6 conference, 25-29 September 2006, Geneva 5

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Migration path to IPv6

• One of the main objectives when implementing IPv6 in
UnixWare was to provide a migration path to IPv6 while
still enabling IPv4 applications to work
– this had the direct consequence of reducing the amount of

effort required to “port” and existing IPv4 application to an
“IPv6 ready” one

• The following recommendations highlights the key
aspects of porting IPv4 applications to IPv6
– Make sure you are using the correct data structures
– Check for use of INADDR_ANY and INADDR_LOOPBACK

for source and loop-back address selection
– Modify any occurrence of IPv4 address and protocol family

constants
– Substitute the newer IPv6 functions for older IPv4 ones

where necessary
– Consider the use of new, more flexible functions which work

in both IPv4 and IPv6 environments

EGEE’6 conference, 25-29 September 2006, Geneva 6

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Data structures

• IPv4 applications use the sockaddr_in and in_addr
structures to pass network address information
between certain networking related functions

• IPv6 uses a larger address space and therefore
uses different data structures
– in6_addr

is used to store the 128−bit network address
– sockaddr_in6

is used to store the remaining details, previously stored
by sockaddr_in, that is, length of the data structure,
address family, flowinfo, port number and an in6_addr
data structure.

• Replace any occurrence of
– sockaddr_in and in_addr with the sockaddr_in6

and in6_addr structures

EGEE’6 conference, 25-29 September 2006, Geneva 7

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

INADDR_ANY and
INADDR_LOOPBACK

• Any occurrence of INADDR_ANY or
INADDR_LOOPBACK must be modified to
use the newer global variables
– in6addr_any or
– in6addr_loopback for assignments

• If you need to initialize an in6_addr
structure use
– either the IN6ADDR_ANY_INIT
– or IN6ADDR_LOOPBACK_INIT macros

EGEE’6 conference, 25-29 September 2006, Geneva 8

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Address and protocol family
constants

• AF_INET6
– IPv6 address family

• PF_INET6
– IPv6 protocol family

• Replace in your application all
occurrences of
– AF_INET with AF_INET6 and
– PF_INET with PF_INET6

EGEE’6 conference, 25-29 September 2006, Geneva 9

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

Substituting old IPv4 functions with
newer IPv6 versions

• Three IPv4 functions have been succeeded by new
functions:
– gethostbyname should be replaced with

gethostbyname2
retrieves the network host entry referenced by a host
name and its address family, which will be AF_INET6.

– inet_addr should be replaced with inet_pton
interprets a character string representing an address
and returns a value suitable for use as an internet
address for both IPv4 and IPv6 address notations.

– inet_ntoa should be replaced with inet_ntop
interprets an internet address and converts it to a
character string for both IPv4 and IPv6 addresses.

• You must use inet_pton and inet_ntop in your IPv6
application because the functions they replace
(inet_addr and inet_ntoa) are not IPv6 aware.

EGEE’6 conference, 25-29 September 2006, Geneva 10

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

IPv6 and gLite WMS

• gLite WMS is not a “simple” monolithic
application
– is a mixture of

“proprietary” services (i.e. developed within
EGEE)
third-party services

– running together and interacting each other
fulfill user requests
supply end user with functionalities for
authenticating, submitting jobs, inquiring job status
etc, etc

EGEE’6 conference, 25-29 September 2006, Geneva 11

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

IPv6 and gLite WMS

• To better understand what is the “size” of
the problem
– consider the set of components needed to

perform a complete build of the glite-workload-
manager service

– Taking into account the recommendations for the
IPv4 to IPv6 porting

highlighting the possible point of failure
• for each component involved in the build, check

the occurrence of “suspicious” IPv4 data-
structure and functions…

EGEE’6 conference, 25-29 September 2006, Geneva 12

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

IPv6 and gLite WMS

INADDR_ addr_in F_INET gethostbyname inet_addr inet_ntoa
org.glite.wms-utils.tls 1 22 4 1 0 1 29
org.glite.wms-utils.jobid 0 0 0 1 0 0 1
org.gridsite.core 1 9 10 1 0 10 31
org.glite.security.voms 1 24 7 2 0 0 34
org.glite.security.gatekeeper 2 10 6 2 0 6 26
org.glite.security.gsoap-plugin 8 34 36 35 18 0 131
org.glite.jp.index 1 1 2 0 0 0 4
org.glite.jp.primary 1 1 2 0 0 0 4
org.glite.lb.server-bones 2 3 6 0 1 0 12
org.glite.lb.client 2 4 2 4 1 3 16
org.glite.lb.server 7 30 24 16 12 6 95
org.glite.lb.logger 1 2 2 0 0 0 5
org.glite.ce.blahp 8 15 20 1 0 1 45
org.glite.ce.monitor-client-api-c 0 0 1 1 0 0 2
org.glite.ce.cream-cli 0 0 0 1 0 0 1
org.glite.data.srm-cli 0 0 0 0 0 1 1
org.glite.data.io-protocol-rfio 0 0 0 1 0 0 1
org.glite.rgma.api-cpp 0 1 2 1 0 0 4
org.glite.rgma.api-c 0 1 3 2 0 0 6
org.glite.wms.thirdparty-globus_gridftp_server 3 35 20 8 10 13 89
org.glite.wms.thirdparty-bypass 1 8 7 3 0 0 19
org.glite.wms.ice 0 0 0 5 0 0 5
org.glite.wms.helper 0 0 0 1 0 0 1
org.glite.wms.manager-ns-commands 0 0 0 1 0 0 1
org.glite.wms.manager-ns-client 0 0 0 2 0 1 3
org.glite.wms.wmproxy 0 0 0 2 0 0 2
org.glite.wms.wmproxy-api-cpp 0 0 0 2 0 0 2
org.glite.wms.client 0 0 0 5 0 0 5
org.glite.gpbox.gsilib 1 25 3 1 0 0 30

40 225 157 99 42 42 605

EGEE’6 conference, 25-29 September 2006, Geneva 13

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

IPv6 and gLite WMS

• making gLite WM an “IPv6 ready” system
is not an immediate task
– identified dependencies within EGEE

components can be easily “fixed” by modifying
the relevant code

easier when the code is developed within JRA1
– for third-party components the problem is a little

bit tricky
since sources are not available IPv4
dependencies cannot be explicitly identified
glite_branch_3_1_0/org.glite.wms.ism >

nm ../../repository/globus/2.4.3-VDT-
1.2.2/rhel30_gcc32/lib/libldap_gcc32pthr.so.2 | grep gethostbyname

U gethostbyname_r@@GLIBC_2.1.2

00019d7b T ldap_pvt_gethostbyname_a

EGEE’6 conference, 25-29 September 2006, Geneva 14

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

The code checker tool

• In order to perform an unattended IPv6
compliance check a dedicated code
checker tools has been developed
– search “suspicious” IPv4 code patterns and

function calls inside the source code
C/C++,Java,Python,Perl

– It is just a simple bash script which should be
executed in the main folder of the code to check

Considering the WMS build system directory
structure

• at the same level of org.glite

EGEE’6 conference, 25-29 September 2006, Geneva 15

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

The code checker tool

• Usage of the checker is straightforward:
– Copy the script in the main folder of the glite wms

build system
same level of org.glite

– Prepare a file containing the list of component to
check IPv6 compliance for

To perform the check on org.glite.security
components

• find -type d -maxdepth 1 -name
“org.glite.security*" | awk -F/ '{print$2}' >
components

– Issue the command
$./ipv6check.sh components

EGEE’6 conference, 25-29 September 2006, Geneva 16

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

The code checker tool

org.glite.security.voms

INADDR_ [FAILED]

addr_in [FAILED]

F_INET$ [PASSED]

gethostbyname [FAILED]

inet_addr [PASSED]

inet_ntoa [PASSED]

Inet4Address [PASSED]

inet_aton [PASSED]

gethostbyname_ex [PASSED]

INADDR_BROADCAST [PASSED]

0.0.0.0 [FAILED]

127.0.0.1 [PASSED]

255.255.255.255 [PASSED]

EGEE’6 conference, 25-29 September 2006, Geneva 17

Enabling Grids for E-sciencE

EGEE-II INFSO-RI-031688

The code checker tool

• Details on how to integrate the IPv6
checking in the current glite build system
should be discussed
– define a new ant target for the current build

system
“IPv6check”

• to be execute as next to “compile” target
• since several code is autogenerated during the

build it is available at compile completion time

– Include this check also in ETICS® ?

