Enabling Grids for E-sciencE

IPv6 code checker tool

Salvatore Monforte (INFN CT)

EGEE 6, 25-29 September 2006, Geneva

Www.eu-egee.org xn}*omatﬁ Society H
an ledia

EGEE-II INFSO-RI-031688 EGEE and gLite are registered trademarks

CC

Enabling Grids for E-sciencE

- IPv6 reccomendations for developing
“IPv6 ready” applications

* gLite WMS code “porting” impact

- glite IPv6 code checking tool

Outline

Cy Moving to IPv6

Enabling Grids for E-sciencE

Changing the network address data
structure has a major impact on all
aspects of IP inter-networking

developer point of view

as first stage of transition we can start following
few simple recommendations in order to
move to “IPv6-ready” application while still
running them on IPv4-based network

such “IPv6 ready” applications can function both
in IPv4 and IPv6 environments

migration to a pure IPv6 network without any
modification to the application

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 3

Cy Moving to IPv6

Enabling Grids for E-sciencE

Impact of the UnixWare IPv6 implementation involves
the following issues:
IPv6 data structures and functions
new data structures required to hold the larger IPv6 address
in6_addr, sockaddr_in6
new and modified network API functions

IN6_IS ADDR_VAMAPPED, gethostbyname2,
getaddrinfo, getnameinfo, etc etc

Address and protocol families
new address and protocol family constants
AF_INET6, PF_INET6
Intercommunication between applications

within a mixture of IPv4 and IPv6 applications running on the
same host passing open sockets is more complicated

IPV6_ADDRFORM

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 4

Cy Migration path to IPv6

Enabling Grids for E-sciencE

One of the main objectives when implementing IPv6 in
UnixWare was to provide a migration path to IPv6 while
still enabling IPv4 applications to work
this had the direct consequence of reducing the amount of
effort required to “port” and existing IPv4 application to an
“IPv6 ready” one
The following recommendations highlights the key
aspects of porting IPv4 applications to IPv6

Make sure you are using the correct data structures

Check for use of INADDR_ANY and INADDR_LOOPBACK
for source and loop-back address selection

Modify any occurrence of IPv4 address and protocol family
constants

Substitute the newer IPv6 functions for older IPv4 ones
where necessary

Consider the use of new, more flexible functions which work
in both IPv4 and IPv6 environments

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 5

C Data structures

Enabling Grids for E-sciencE

IPv4 applications use the sockaddr_in and in_addr
structures to pass network address information
between certain networking related functions

IPv6 uses a larger address space and therefore
uses different data structures

In6_addr
is used to store the 128-bit network address

sockaddr_in6

is used to store the remaining details, previously stored
by sockaddr_in, that is, length of the data structure,
address family, flowinfo, port number and an in6_addr
data structure.

Replace any occurrence of

sockaddr_in and in_addr with the sockaddr_in6
and in6_addr structures

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 6

e - INADDR_ANY and

Enabling Grids for E-sciencE I NA D D R_L O O P B A C K

* Any occurrence of INADDR_ANY or
INADDR LOOPBACK must be modified to
use the newer global variables
— In6addr_any or
— In6addr_loopback for assignments

- If you need to initialize an in6_addr
structure use

— either the INGADDR_ANY _INIT
— or INGADDR_LOOPBACK_INIT macros

Address and protocol family

Enabling Grids for E-sciencE C O n S t an tS

- AF _INET6
— |IPv6 address family

- PF_INET6
— IPv6 protocol family
- Replace in your application all
occurrences of
— AF_INET with AF_INET6 and
— PF_INET with PF_INET6

e Substituting old IPv4 functions with

newer IPv6 versions

Enabling Grids for E-sciencE

Three IPv4 functions have been succeeded by new
functions:
gethostbyname should be replaced with
gethostbyname?2

retrieves the network host entry referenced by a host
name and its address family, which will be AF_INET®.

inet_addr should be replaced with inet_pton

interprets a character string representing an address
and returns a value suitable for use as an internet
address for both IPv4 and IPv6 address notations.

inet_ntoa should be replaced with inet_ntop

interprets an internet address and converts it to a
character string for both IPv4 and IPv6 addresses.

You must use inet_pton and inet_ntop in your IPv6
application because the functions they replace
(inet_addr and inet_ntoa) are not IPv6 aware.

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 9

CHEE IPv6 and gLite WMS

Enabling Grids for E-sciencE

gLite WMS is not a “simple” monolithic
application
is a mixture of

“proprietary” services (i.e. developed within
EGEE)

third-party services
running together and interacting each other
fulfill user requests

supply end user with functionalities for
authenticating, submitting jobs, inquiring job status
etc, etc

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 10

CCLCC S IPv6 and gLite WMS

To better understand what is the “size” of
the problem

consider the set of components needed to

perform a complete build of the glite-workload-
manager service

Taking into account the recommendations for the
IPv4 to IPv6 porting

highlighting the possible point of failure

for each component involved in the build, check
the occurrence of “suspicious” IPv4 data-
structure and functions...

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 11

IPv6 and gLite WMS

Enabling Grids for E-sciencE

INADDR _ addr_in F_INET gethostbyname inet_addr inet_ntoa

org.glite.wms-utils.tls 1 22 4 1 0 1 29
org.glite.wms-utils.jobid 0 0 0 1 0 0 1
org.gridsite.core 1 9 10 1 0 10 31
org.glite.security.voms 1 24 7 2 0 0 34
org.glite.security.gatekeeper 2 10 6 2 0 6 26
org.glite.security.gsoap-plugin 8 34 36 35 18 0 131
org.glite.jp.index 1 1 2 0 0 0 4
org.glite.jp.primary 1 1 2 0 0 0 4
org.glite.lb.server-bones 2 3 6 0 1 0 12
org.glite.lb.client 2 4 2 4 1 3 16
org.glite.lb.server 7 30 24 16 12 6 95
org.glite.lb.logger 1 2 2 0 0 0 5
org.glite.ce.blahp 8 15 20 1 0 1 45
org.glite.ce.monitor-client-api-c 0 0 1 1 0 0 2
org.glite.ce.cream-cli 0 0 0 1 0 0 1
org.glite.data.srm-cli 0 0 0 0 0 1 1
org.glite.data.io-protocol-rfio 0 0 0 1 0 0 1
org.glite.rgma.api-cpp 0 1 2 1 0 0 4
org.glite.rgma.api-c 0 1 3 2 0 0 6
org.glite.wms.thirdparty-globus_gridftp_server 3 35 20 8 10 13 89
org.glite.wms.thirdparty-bypass 1 8 7 3 0 0 19
org.glite.wms.ice 0 0 0 5 0 0 5
org.glite.wms.helper 0 0 0 1 0 0 1
org.glite.wms.manager-ns-commands 0 0 0 1 0 0 1
org.glite.wms.manager-ns-client 0 0 0 2 0 1 3
org.glite.wms.wmproxy 0 0 0 2 0 0 2
org.glite.wms.wmproxy-api-cpp 0 0 0 2 0 0 2
org.glite.wms.client 0 0 0 5 0 0 5
org.glite.gpbox.gsilib 1 25 3 1 0 0 30

40 225 157 99 42 42 605

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 12

Cy IPv6 and gLite WMS

Enabling Grids for E-sciencE

making gLite WM an “IPv6 ready” system
IS not an immediate task

identified dependencies within EGEE
components can be easily “fixed” by modifying
the relevant code

easier when the code is developed within JRA1

for third-party components the problem is a little
bit tricky

since sources are not available IPv4
dependencies cannot be explicitly identified

glite branch 3 1 0/org.glite.wms.ism >

nm ../../repository/globus/2.4.3-VDT-

1.2.2/rhel30 gcc32/1ib/libldap gcc32pthr.so.2 | grep gethostbyname
U gethostbyname r@@GLIBC 2.1.2

00019d7b T ldap pvt gethostbyname a

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 13

CHEE The code checker tool

Enabling Grids for E-sciencE

In order to perform an unattended IPv6
compliance check a dedicated code
checker tools has been developed
search “suspicious” IPv4 code patterns and
function calls inside the source code
C/C++,Java,Python,Perl

It is just a simple bash script which should be
executed in the main folder of the code to check

Considering the WMS build system directory
structure

at the same level of org.glite

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 14

CHEE The code checker tool

Enabling Grids for E-sciencE

Usage of the checker is straightforward:
Copy the script in the main folder of the glite wms
build system

same level of org.glite

Prepare a file containing the list of component to
check IPv6 compliance for

To perform the check on org.glite.security
components

find -type d -maxdepth 1 -name
“org.glite.security*" | awk -F/ '{print$2}' >
components

Issue the command
$./ipvécheck.sh components

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 15

G

Enabling Grids for E-sciencE

org.glite.security.voms

INADDR

addr in

F_INETS
gethostbyname
inet addr

inet ntoa
Inet4Address
1hct aron
gethostbyname ex
INADDR BROADCAST
0.0.0.0
127.0.0.1

255 .25b .255 255

EGEE-II INFSO-RI-031688

[FAILED]
[FAILED]
[PASSED]
[FAILED]
[PASSED]
[PASSED]
[PASSED]
[PASSED]
[PASSED]
[PASSED]
[FAILED]
[PASSED]
[PASSED]

EGEE’6 conference, 25-29 September 2006, Geneva

The code checker tool

16

CCLCC N The code checker tool

Details on how to integrate the IPv6
checking in the current glite build system
should be discussed

define a new ant target for the current build
system
“IPvbecheck”
to be execute as next to “compile” target

since several code is autogenerated during the
build it is available at compile completion time

Include this check also in ETICS® ?

EGEE-II INFSO-RI-031688 EGEE’6 conference, 25-29 September 2006, Geneva 17

