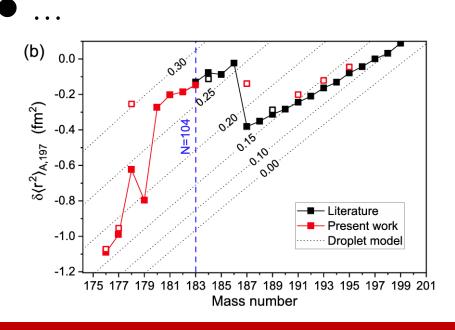
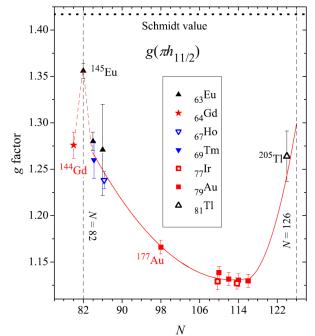


CRIS Collaboration Meeting 2025 Summary of neutron-deficient gold (IS737)

Speakers: Yinshen Liu, Osama Ahmad Supervisors: Xiaofei Yang, Gerda Neyens Outline

- 1. Motivation
- 2. Experiment
- 3. Data Analysis
- 4. Results
- 5. Summary and Outlook

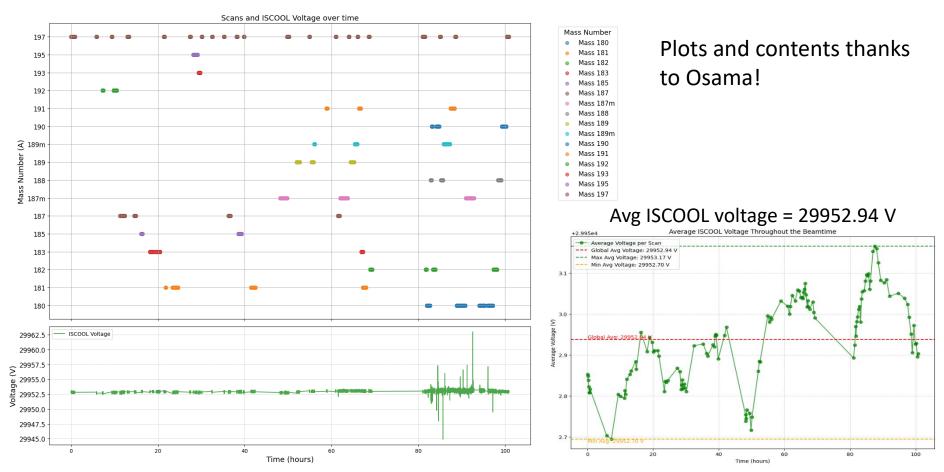

Motivation


Quadrupole moments of neutron-deficient gold (Z = 79) For:

- Island of deformation (180-186g)
- Shape coexistence (187m, 178m)

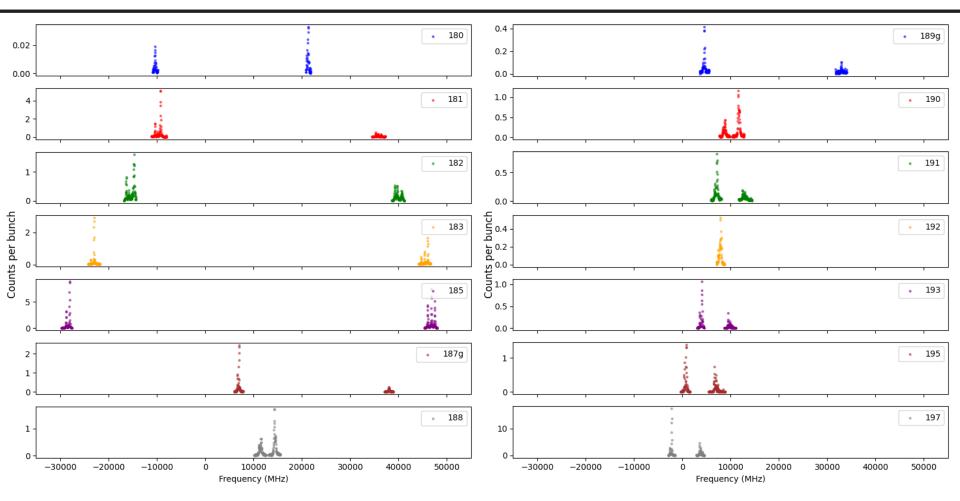
*: this work

- #: literature values available
- 11/2- isomers (177m, 189m, 191m, 193m, 195m, 197m)


Experiment

Production: 1.4 GeV P + UC_X AI 84806.3 cm⁻¹ Laser scheme: D2 line for 1st **OPO** IP 74409 cm⁻¹ Scan strategy: V scan for 2 sides 673.9 nm Ref isotope: 197 Isotopes: 180, 181, 182, 183, 185, 8d ²D_{3/2} 69971.42 cm⁻¹ 187g&m, 188, 189g&m, 190, 191, 192, 193, 195 347.2 nm Cobra + SHG Main issues: 6p ²P_{3/2} 41174.613 cm⁻¹ Mass marker; Contamination; Shared proton 242.8 nm Matisse + Jyvis + THG beam intensity; Seeking for isomers... $6s {}^{2}S_{1/2} 0 \text{ cm}^{-1}$

Experiment



Max and Min ISCOOL Voltage fluctuation throughout the beamtime was 18V.

Avg max and min ISCOOL Voltage fluctuation throughout the beamtime was ~ 0.5V.

HFS Spectrum

14 ground states + 2 isomers

CRIS Collaboration Meeting 2025

6

Data analysis

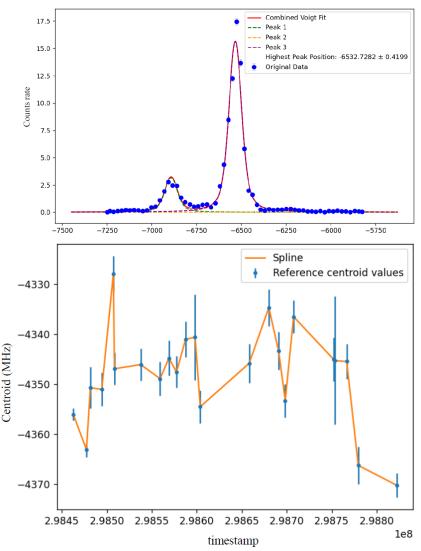
Diode correction:

$$\begin{aligned} \nu_{\mathrm{T}} &= \nu_{\mathrm{T}}^{\mathrm{read}} - (\nu_{\mathrm{T}}^{\mathrm{diode}} - \nu_{\mathrm{T=0}}^{\mathrm{diode}}). \end{aligned}$$

$$\begin{aligned} \mathbf{VS} \\ \nu_{\mathrm{T}} &= \left(\alpha \frac{\nu_{\mathrm{T}}^{\mathrm{diode}} - \nu_{\mathrm{T=0}}^{\mathrm{diode}}}{\nu_{\mathrm{T=0}}^{\mathrm{diode}}} + 1\right) \nu_{\mathrm{T}}^{\mathrm{read}} \end{aligned}$$

Reference scan: only LHS for most cases

Strategy I: fix Al (Au), fit Bu, centroid, fitting with 3 (overlapped) peaks on LHS;


 \rightarrow saw relatively large ref errors (compare with CRIS 2023 experiments)

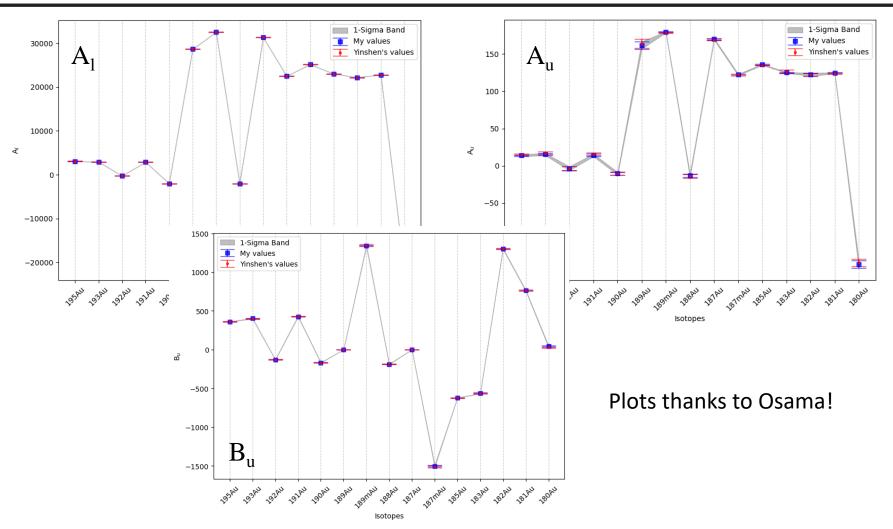
Strategy II:

fit all full ref scans to get a offset (Δ) from highest peak to centroid; use Voigt fitting for LHS highest peak (P); deduce centroid from P and Δ .

Reference correction only affects isotope shift!

Data analysis

isotope	spin	IS	A_l	A_u	B _u	Data sets	A	A _u	B _u
195	1.5	3036.6(14)	3099.1(20)	14.8(8)	361.9(18)	2	3098.4 (21)	13.8(12)	360.4(17)
193	1.5	6143.6(27)	2939(4)	17.1(17)	396(4)	1	2935.4(31)	15.4(14)	402.4(36)
192	1	7827.5(28)	-251(4)	-3.9(27)	-127.8(21)	2	-251.9(38)	-3.6(24)	-128.7(19)
191	1.5	9221.2(24)	2889(4)	15.7(17)	429(5)	2	2890.7(33)	14.2(17)	427.7(45)
190	1	10662(13)	-2004(6)	-10.3(20)	-169(28)	2	-1998.6(94)	-10.5(17)	-167.3(22)
189	5.5(m)	10865(7)	32540.6(13)	178.8(6)	1348(14)	2	28654.8(93)	161.7(48)	
189	0.5(g)	11618(9)	28654(10)	164(6)	/	2	32540.5(8)	179.2(7)	1339.2(87)
188	1	13358(8)	-2008(5)	-13.9(24)	-184(3)	2	-2004.8(45)	-12.9(22)	-187.0(32)
187	4.5(m)	5318(8)	22510.9(13)	122.1(9)	-1510(11)	2	31341.8(56)	169.9(11)	
187	0.5(g)	14692.6(23)	31338(4)	169.0(10)	/	4	22511.8(11)	122.08(9)	-1502(12)
185	2.5	3083.4(11)	25183.7(6)	134.7(5)	-623.2(19)	3	25183.09(39)	135.63(65)	-621.6(12)
183	2.5	5469(6)	23020.6(19)	126.1(25)	-560(8)	2	23021.5(13)	125.01(47)	-566.2(26)
182	2	6770(7)	22213.5(21)	122.1(18)	1301(6)	2	22214.1(24)	122.3(21)	1300.9(62)
181	1.5	7394(3)	22808.8(25)	123.9(10)	765(5)	2	22809.7(17)	124.42(68)	763.5(52)
180	(1)	10562(6)	-21289(19)	-130(5)	32(13)	2	-21308(18)	-132.2(51)	42(9)


Satlas2 analysis result by Yinshen

analysis result by Osama

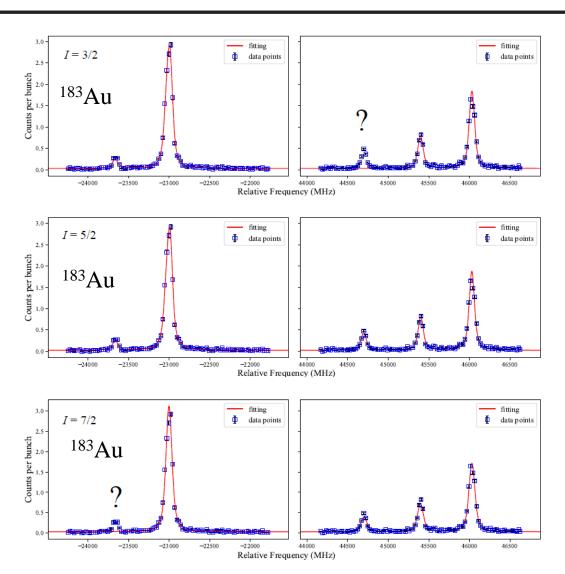
Analysis parallelly and independently, all hfs constants are within 1-sigma!

Data analysis

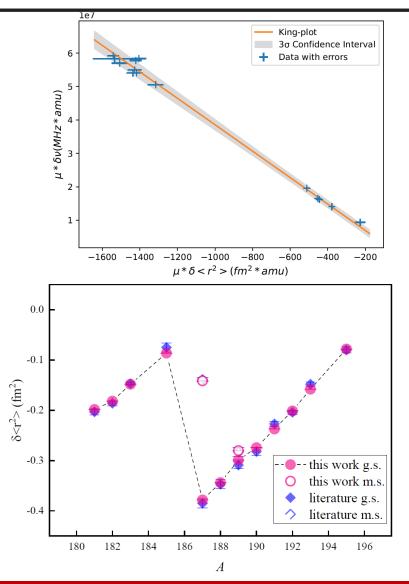
Analysis parallelly and independently, all hfs constants are within 1-sigma!

CRIS PEKING UNIVERSITY

Spins:


¹⁸¹Au:
$$I = 3/2;$$

¹⁸²Au: I = 2;


¹⁸³Au: I = 5/2;

Tentatively assigned in the literature, Confirmed by us for the first time.

Isotope	Half-life	Spin				
$\frac{181}{181}$ Au ₁₀₁	$13.7 \mathrm{~s}$	$(3/2^{-})$				
$^{182}Au_{103}$	$15.5 \mathrm{~s}$	(2^+)				
$^{183}Au_{104}$	42.8 s	$(5/2^{-})$				
¹⁸⁰ Au: low statistic						

Charge radii

D2	line (King-plot):
Б	$20 ((6) CH_{-}/f_{m}^{2})$

 $F = -39.6(6) \,\mathrm{GHz/fm^2},$

k = -1002(432) GHz u.

D1 line (atomic cal): $F = -40.1(11) \text{ GHz/fm}^2$,

$k = 703(101) \,\mathrm{GHz} \,\mathrm{u}.$

isotope	spin	Isotope Shift/MHz	$\delta \langle r^2 \rangle / \text{fm}^2$ (this work)	$\delta \langle r^2 \rangle / \text{fm}^2$ (literature)
195	1.5	3036.6(14)	-0.07808(4)[136]	-0.080(6)
193	1.5	6143.6(27)	-0.15797(7)[275]	-0.148(4)
192	1	7827.5(28)	-0.20122(7)[350]	-0.204(4)
191	1.5	9221.2(24)	-0.23714(6)[414]	-0.227(5)
190	1	10662(13)	-0.2743(3)[48]	-0.282(8)
189	5.5(m)	10865(7)	-0.28010(18)[502]	-0.283(9)
189	0.5(g)	11618(9)	-0.29913(23)[529]	-0.309(7)
188	1	13358(8)	-0.34383(20)[606]	-0.347(9)
187	4.5(m)	5318(8)	-0.14131(20)[372]	-0.139(4)
187	0.5(g)	14692.6(23)	-0.37829(6)[669]	-0.385(9)
185	2.5	3083.4(11)	-0.08628(3)[385]	-0.075(9)
183	2.5	5469(6)	-0.14808(15)[485]	-0.147(3)
182	2	6770(7)	-0.18173(18)[540]	-0.186(5)
181	1.5	7394(3)	-0.19827(8)[582]	-0.203(6)

(): statistical errors; []: systematic errors from *F* & *k*.

Magnetic moments:

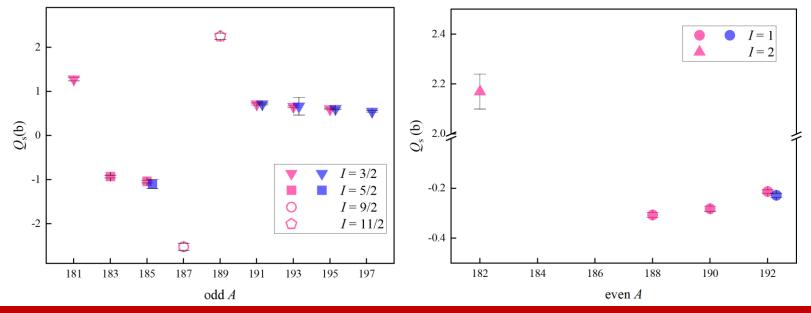
$$\mu_{A} = \mu_{ref} \frac{I_{A}}{I_{ref}} \frac{Al_{A}}{Al_{ref}} (1 + \Delta^{A})$$

 μ errors mainly come from relative hyperfine anomaly calculation (RHFA)

 μ without available RHFA information are evaluated with empirical ML rule. In this case errors are not given.

$\mu = A_l I / 29005 \pm 0.012, I = l \pm 1/2$

isotope	spin	A _l /MHz	Alref/MHz	RHFA	μ_A/μ_N (this work)	μ_A/μ_N (literature)
195	1.5	3099.1(20)	3040(90)		0.160	0.157(5)
193	1.5	2939(4)	2941(5)	-0.005(11)	0.1397(16)	0.1398(15)
192	1	-251(4)	-220(60)		-0.009	-0.0107(15)
191	1.5	2889(4)	2885(3)	-0.012(14)	0.1364(19)	0.1363(19)
190	1	-2004(6)	-1870(180)		-0.069	-0.065(7)
189	5.5(m)	32540.6(13)	32625(42)	0.086(16)	6.19(9)	6.365(38)
189	0.5	28654(10)	28632(128)	0.09(6)	0.499(27)	0.499(27)
188	1	-2008(5)	-1940(127)		-0.069	-0.07(3)
187	4.5(m)	22510.9(13)	22480(90)	0.095(16)	3.53(5)	3.529(53)
187	0.5	31338(4)	31032(168)	0.13(8)	0.56(4)	0.557(41)
185	2.5	25183.7(6)	25176(56)	0.09(3)	2.19(6)	2.193(61)
183	2.5	23020.6(19)	22900(100)		1.972	2.057(39)
182	2	22213.5(21)	22180(80)	0.17(7)	1.66(10)	1.664(91)
181	1.5	22808.8(25)	23037(40)		1.192	1.238(67)



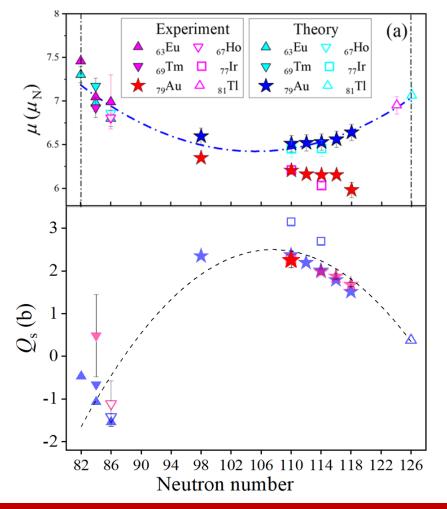
Quadrupole moments:

$$Q_A = Q_{197} \frac{Bu_A}{Bu_{197}}$$

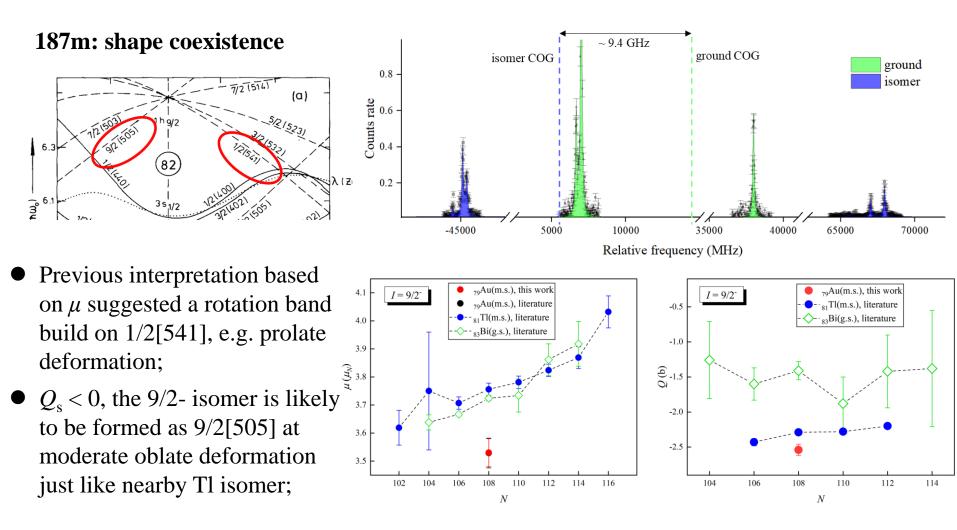
 $Bu_{197} = 328(2) \text{ MHz}$
 $Q_{197} = 0.547(16) \text{ b}$

isotope	spin	B_u/MHz	Q/b (this work)	<i>Q</i> /b (literature)
195	1.5	361.9(18)	0.604(18)	0.607(18)
193	1.5	396(4)	0.660(21)	0.664(20)
192	1	-127.8(21)	-0.213(7)	-0.228(8)
191	1.5	429(5)	0.715(23)	0.716(21)
190	1	-169(28)	-0.282(10)	
189	5.5(m)	1348(14)	2.25(7)	
188	1	-184(30)	-0.307(10)	
187	4.5(m)	-1510(11)	-2.52(8)	
185	2.5	-623.2(19)	-1.04(3)	-1.10(10)
183	2.5	-560(8)	-0.93(3)	
182	2	1301(6)	2.17(7)	
181	1.5	765(5)	1.28(4)	

CRIS Collaboration Meeting 2025



189m: $\pi h_{11/2}$ state in odd *Z* even *N* (63 ≤ *Z* ≤ 82, 82 ≤ *N* ≤ 126)

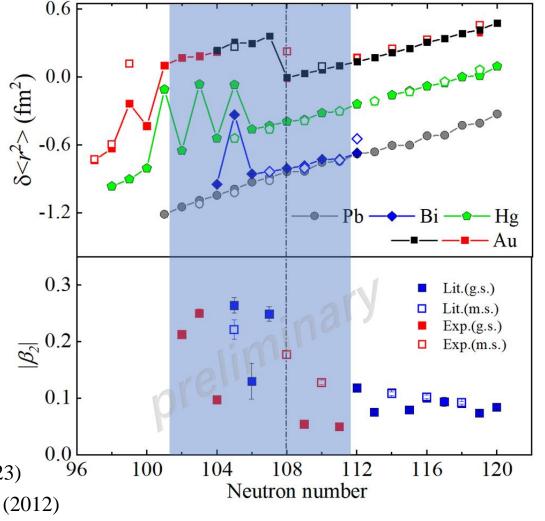

Both μ and Q_s show the nearly parabolic trends;

- Previous interpretation for μ : 1st order core-polarization correction due to $vf_{7/2} \rightarrow vf_{5/2}$
- DFT calculations reproduced μ and spectroscopic Q_s without using effective charges, including the ^{189m}Au (this work), and 193,195,197 gold isomers (literature)
- time-reversal symmetry breaking impacts very little (<1%) on Q_s , while Angular Momentum Projection plays a vital role in spectroscopic Q_s calculation;
- effective test for the validity of DFT.

J. Bonnard, et al. Phys. Lett. B, 843 (2023) 138014

A. E. Barzakh et al., Phys. Rev. C, 101, 064321 (2020)

Island of deformation


$$Q_{\rm s} = \frac{3K^2 - I(I+1)}{(2I+3)(I+1)}Q_{\rm intr.}$$

$$Q_{\text{intr.}} = \frac{3}{\sqrt{5\pi}} Z R_0^2 \beta_2 (1 + 0.36\beta_2).$$

- For now the strong coupling assumption (K = I) is used in β_2 extraction;
- potential of nonaxial deformation?

B. Bally, et al., Eur. Phys. J. A 59, 58 (2023)Y. Oktem et al., Phys. Rev. C, 86, 054305 (2012)

L. K. Peker et al., Phys. Rev. C, 20, 855 (1979)

CRIS Collaboration Meeting 2025

Summary:

- Firmly determine the spins of 181-183;
- Quadrupole moments of 7 states;
- 3 physics cases are (partially) investigated;

Outlook:

- □ Approaching more neutron-deficient side (e.g. 176-180) and isomers in the next gold run (13 shifts remaining);
- \square Calculation and interpretation for Q_s and deformation parameters;

Thanks for your attention!

"Due to the technical stop, our run will be divided into 2 parts:

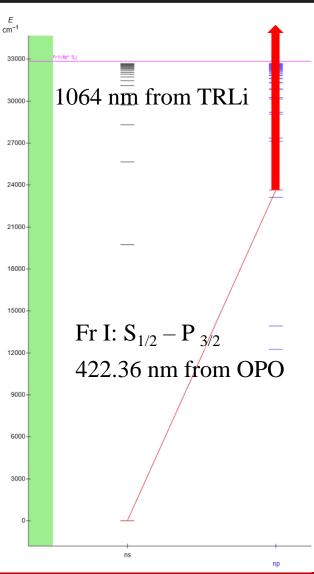
1st: 06/06(Thur) afternoon- 11/06(Tue) morning

2nd: 14/06(Fri) afternoon- 18/06(Tue) afternoon"

Thursday	06-06	night AM PM	Au		8:30 Continue with setup Proton scan + yield checks Stable beam to CRIS	GPS HRS	8:30 #834M Direct (-10,-63)	MEDICIS	
Friday	07-06	PM			IS737 - 177-188Au - 30 keV		11:00 Change trolley Indirect (0,0)		
Saturday	08-06	night AM PM			IS737 - 177-188Au - 30 keV			NORMHRS	
Sunday	09-06	night AM PM			IS737 - 177-188Au - 30 keV				
Monday	10-06	night AM PM		9:30 #534-Sn-VD7	IS737 - 177-188Au - 30 keV			8:30 - 10:30 NORMHRS	

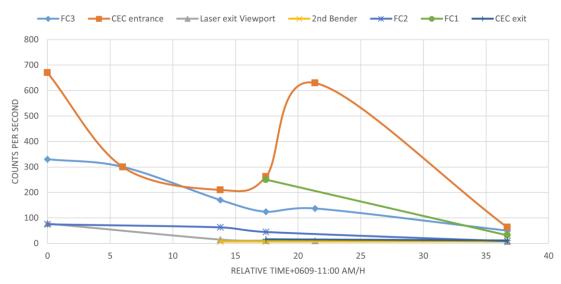
11 shifts with protons at 1st half according to the plan

Failed to see any gold RIS signal before the end of 1st half Mainly due to ISOLDE side ☺: **No gold mass marker; Contamination.**

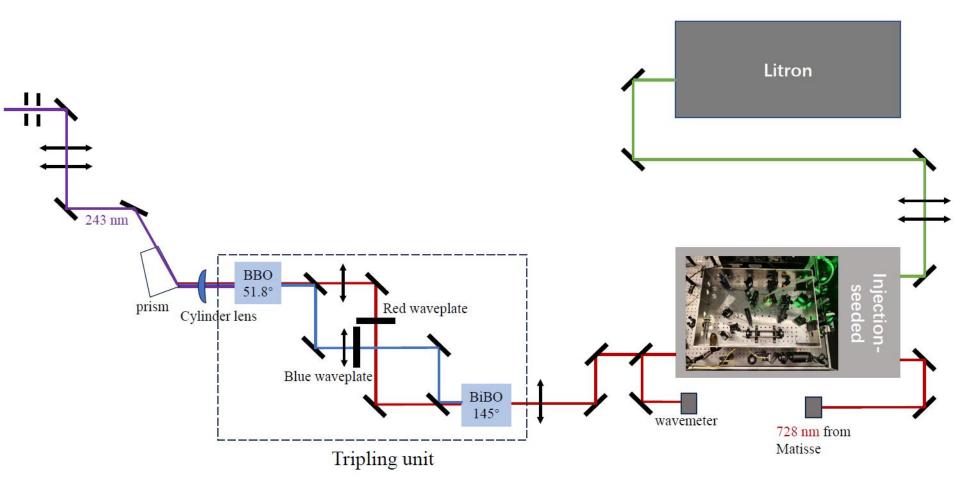

Summary: On GPS, IDS and ECSLI finish on Thursday 8:30. Short interruption for target change on Tuesday afternoon. On HRS, setup for CRIS on Thursday, in the evening, 3 shifts of stable beam to CRIS. Protons for CRIS on Friday afternoon.

1st half summary

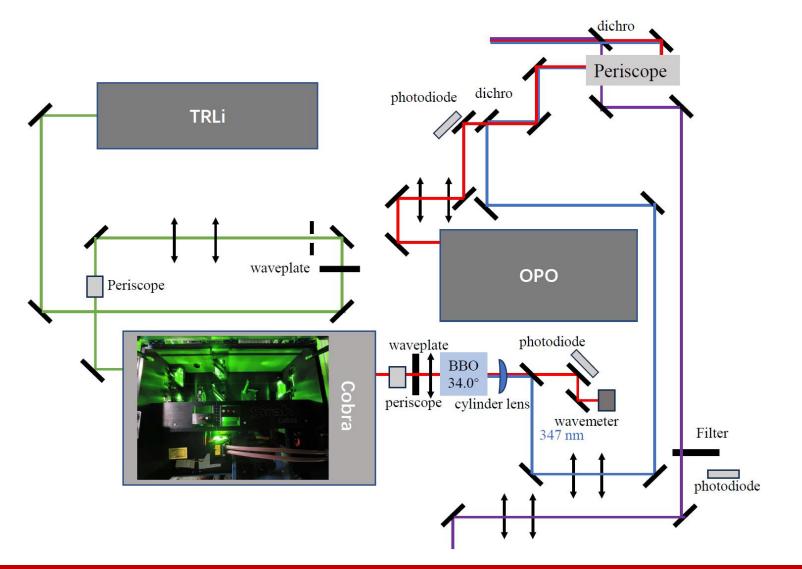
What we managed to achieve:


- Successfully find out ²²¹Fr RIS signal to make sure our setup is working ideally and a beneficial training for fresh blood
- Beamtune with stable K&U
- Set up correct laser/beam timing, prepare proton beamgate
- Locate the source of heating up downstairs laser tent which cause unstable OPO

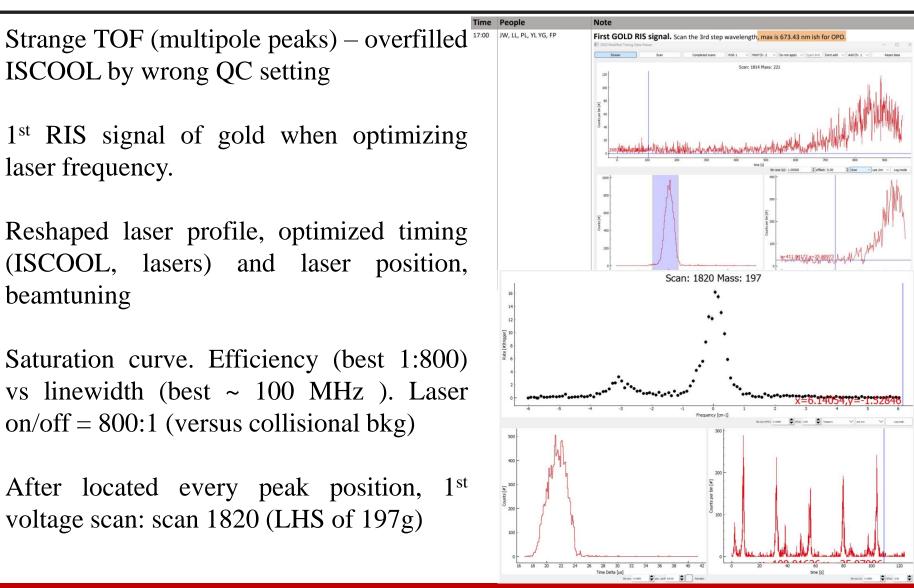
2nd part preparation



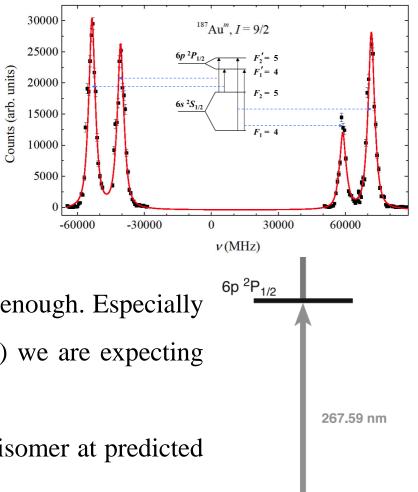
- New gold target with mass marker (#839-UC-MI1(Ta)), "pure" gold beam from mass marker&RILIS
- Beam time extended (stable beam started at Fri. afternoon, gave proton to ISOLTRAP next Thur. afternoon)
- Proton sharing with solid physics



CRIS RADIOACTIVITY-TIME



1st gold RIS and 1st scan

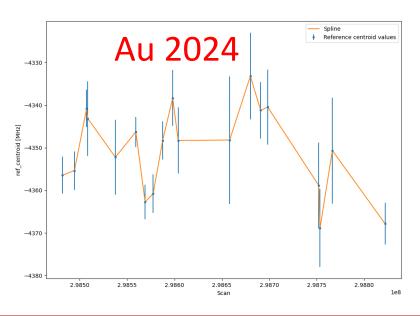


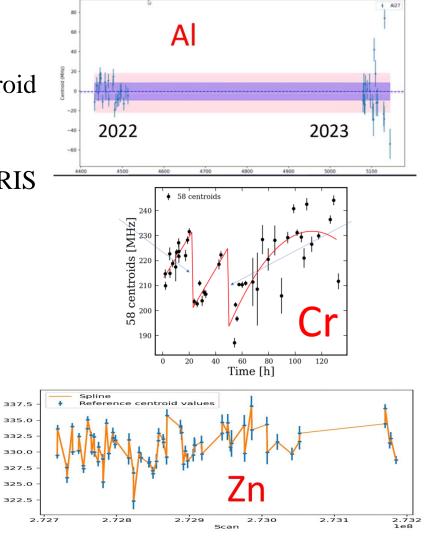
Searching for g.s & i.s.

- Used 197&192 to adjust prediction, almost every g.s. could be easily located around predicted value (off by ~ 0.004 cm⁻¹)
- But we could not see even one single isomer with scanning 1st & 2nd steps.
- RILIS 1st step is broad but may not be broad enough. Especially for isomers with large spins (e.g. 9/2-, 11/2-) we are expecting over 100 GHz for D1 transition.
- Shifted 1st step of RILIS and we saw our 1st isomer at predicted wavenumber!

6s ²S_{1/2}

25

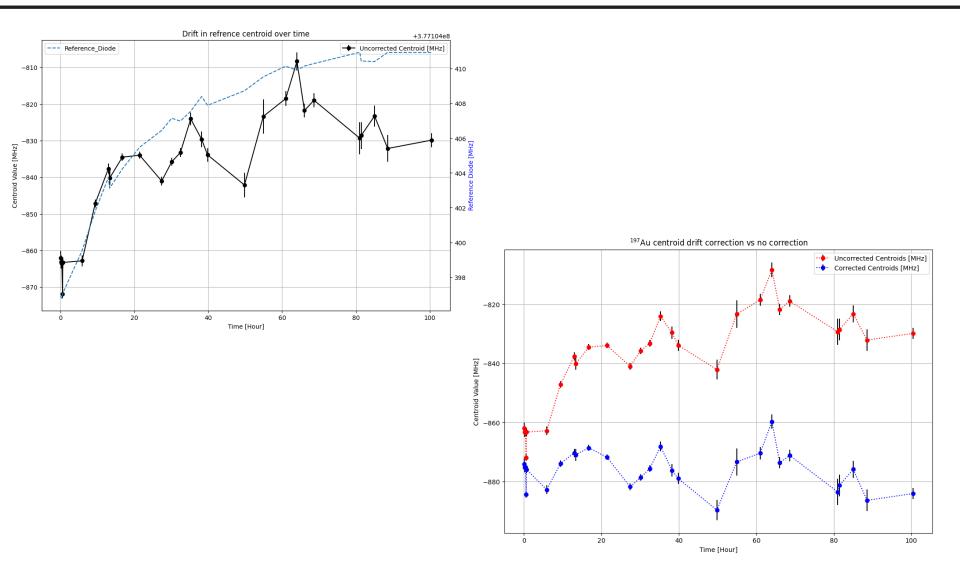

Details in reference analysis



Ref scans: only LHS for most cases

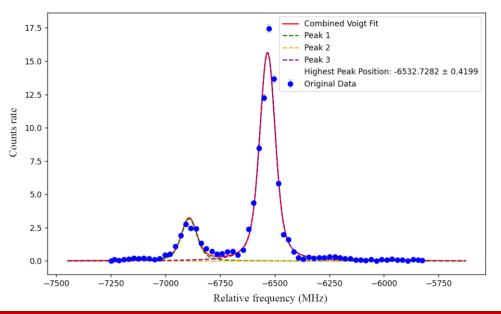
Strategy in Round I: fix Al (Au), fit Bu, centroid with 3 (overlapped) peaks

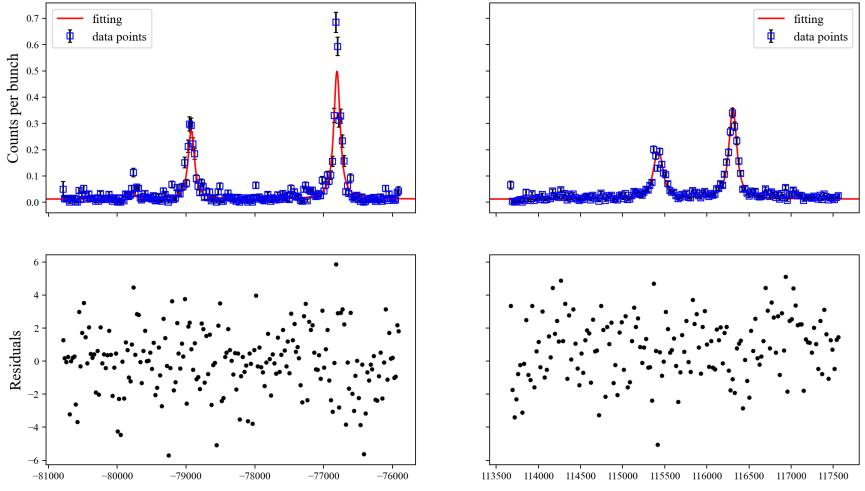
Comments: large ref errors (compare with CRIS 2023 experiments)


26

CRIS Collaboration Meeting 2025

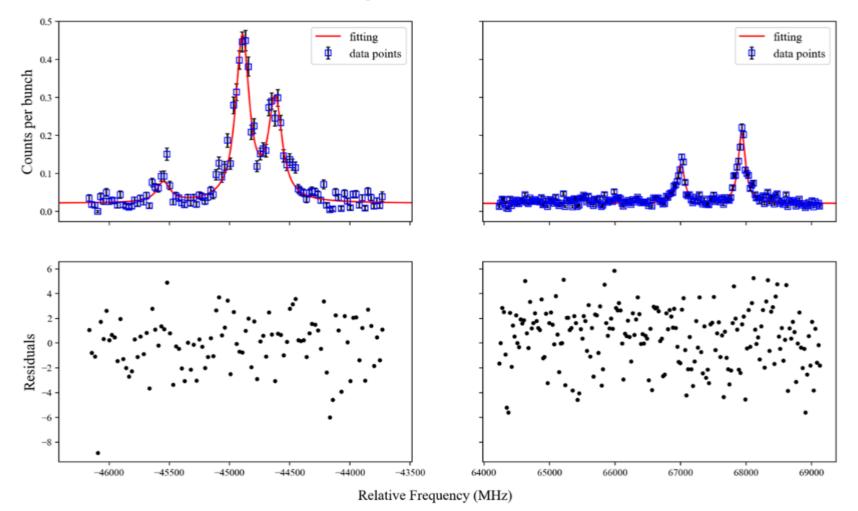
ref_centroid [MHz]


27

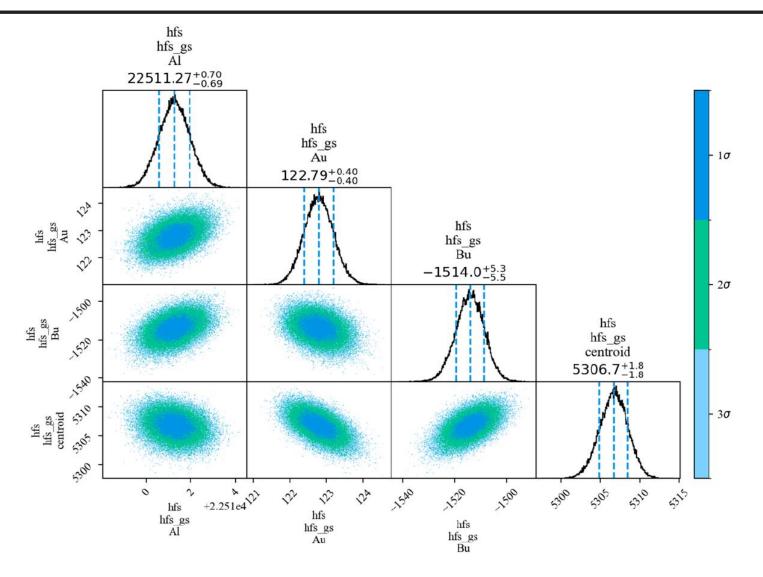

scan	centroid	error	Р	error	$\Delta =$	error
number					COG - P	
1820+1821	-4356.1	1.2	-6532.7	0.4	2176.6	1.3
1822	-4363.1	1.4	-6548.0	0.9	2184.8	1.7
1939+1940	-4390.2	4.0	-6523.8	3.4	2133.7	5.3
2030+2031	-4370.3	2.4	-6541.5	2.1	2171.3	3.2

Δ = centroid – *P* = 2178.8(31) MHz,

Voltage scan 2004 + 2005 of 189m



Relative Frequency (MHz)


CRIS Collaboration Meeting 2025

Voltage scan 2013 + 2014 of 187m

