Atomic physics studies of the heaviest alkaline

P. Lassègues, R. P. de Groote, A. Kastberg et al.

- New atomic levels identified in Fr
- Lifetime measurements performed for excited *P*-states
- Identified **6D state** (broadband)
- New Rydberg series observed

Results December 2023

Results December 2023

Energy Levels

Energy levels

Energy levels

Figure from :Budinčević, I. et al. Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry. Phys. Rev. C 90, (2014).

Energy levels – litterature

Level	Ref 1 (NIST) 212 Fr	Exp 221 Fr [we are here]	Ref 2 (BK Sahoo)	Ref 1 (NIST)+IS 221 Fr	$\Delta\widetilde{ u}$ Ref 1	$\Delta\widetilde{\nu}$ Ref 2
8 <i>P</i> _{3/2}	23 658.306(5) [Exp] (1)	23 657.5354(11)	23 667.532 [Theo]	23 657.5288 [Exp]	0,0066 (197 MHz)	9,9966
9 <i>P</i> _{1/2}	27 118.21(5) [Theo] (2)	27 111.2491(49)	27 121.042 [Theo]	(27 117.4329)	(6,183762)	9,7929
9P _{3/2}	27 366.20(5) [Theo] (2)	27 360.1054(53)	27 368.492 [Theo]	(27 365.4229)	(5,317462)	8,3866

8

Level	Isotope shift (MHz)
8P _{3/2}	-23 298.0(8) [Exp] (3)
9 <i>P</i> _{1/2}	-
9P _{3/2}	-

(1) Duong, H. et al. First observation of the blue optical lines of francium. Europhysics Letters 3, 175 (1987).

(2) Biémont, E., Quinet, P. & Van Renterghem, V. Theoretical investigation of neutral francium. *Journal of Physics B: Atomic, Molecular and Optical Physics* **31**, 5301 (1998).

(3) Sansonetti, J. E. Spectroscopic Data for Neutral Francium (FrI). Journal of Physical and Chemical Reference Data 36, 497–507 (2007).

Energy levels – litterature

Level	Ref 1 (NIST) 212 Fr	Exp 221 Fr [we are here]	Ref 2 (BK Sahoo)	Ref 1 (NIST)+IS 221 Fr	$\Delta\widetilde{ u}$ Ref 1	$\Delta\widetilde{\nu}$ Ref 2
8 <i>P</i> _{3/2}	23 658.306(5) [Exp] (1)	23 657.5354(11)	23 667.532 [Theo]	23 657.5288 [Exp]	0,0066 (197 MHz)	9,9966
$9P_{1/2}$	27 118.21(5) [Theo] (2)	27 111.2491(49)	27 121.042 [Theo]	(27 117.4329)	(6,183762)	9,7929
9P _{3/2}	27 366.20(5) [Theo] (2)	27 360.1054(53)	27 368.492 [Theo]	(27 365.4229)	(5,317462)	8,3866

Level	Isotope shift (MHz)
8P _{3/2}	-23 298.0(8) [Exp] (3)
9 <i>P</i> _{1/2}	-
9P _{3/2}	-

(1) Duong, H. et al. First observation of the blue optical lines of francium. Europhysics Letters 3, 175 (1987).

(2) Biémont, E., Quinet, P. & Van Renterghem, V. Theoretical investigation of neutral francium. *Journal of Physics B: Atomic, Molecular and Optical Physics* **31**, 5301 (1998).

(3) Sansonetti, J. E. Spectroscopic Data for Neutral Francium (FrI). Journal of Physical and Chemical Reference Data 36, 497–507 (2007).

Energy levels – litterature

Level	Ref 1 (NIST) 212 Fr	Exp 221 Fr [we are here]	Ref 2 (BK Sahoo)	Ref 1 (NIST)+IS 221 Fr	$\Delta\widetilde{ u}$ Ref 1	$\Delta\widetilde{\nu}$ Ref 2
8 <i>P</i> _{3/2}	23 658.306(5) [Exp] (1)	23 657.5354(11)	23 667.532 [Theo]	23 657.5288 [Exp]	0,0066 (197 MHz)	9,9966
$9P_{1/2}$	27 118.21(5) [Theo] (2)	27 111.2491(49)	27 121.042 [Theo]	(27 117.4329)	(6,183762)	9,7929
9P _{3/2}	27 366.20(5) [Theo] (2)	27 360.1054(53)	27 368.492 [Theo]	(27 365.4229)	(5,317462)	8,3866

Level	Isotope shift (MHz)
8P _{3/2}	-23 298.0(8) [Exp] (3)
9 <i>P</i> _{1/2}	-
9P _{3/2}	-

(1) Duong, H. et al. First observation of the blue optical lines of francium. Europhysics Letters 3, 175 (1987).

(2) Biémont, E., Quinet, P. & Van Renterghem, V. Theoretical investigation of neutral francium. *Journal of Physics B: Atomic, Molecular and Optical Physics* **31**, 5301 (1998).

(3) Sansonetti, J. E. Spectroscopic Data for Neutral Francium (FrI). Journal of Physical and Chemical Reference Data 36, 497–507 (2007).

Atomic studies in Fr : Campain 2023

Atomic studies in Fr : Campain 2024

Lifetimes

8p3/2 Lifetime reference

8p3/2 Lifetime reference

TABLE II. Summary of the details of the different cycles in the lifetime measurement of the 8P3/2 state in Fr. The systematic y-error corresponds to the added uncertainty on the count rate to account for atomic beam fluctuations.

	Step	ISCOOL	Syst.	$8P_{3_2}$
n°	timing	ejection	y-error	lifetime (ns)
	mod.	$delay(\mu s)$	(%)	Single fit
1	Ion.	0	3.3	76.15(6.80)
2	Ion.	-0.5	3.4	82.94(5.38)
3	Ion.	+0.5	0.9	103.04(7.17)
4	Exc.	0	4.9	78.60(5.19)
			weighted mean :	83.68(2.98)
ref[10]				83.5(1.5)

8p3/2 Lifetime reference

TABLE III. Summary of the details of the different cycles in the lifetime measurement of the 8P3/2 state in Fr. The systematic y-error corresponds to the added uncertainty on the count rate to account for atomic beam fluctuations.

	Step	ISCOOL	Syst.	$8P_{3_2}$
n°	timing	$e_{jection}$	y-error	lifetime (ns)
	mod.	$delay(\mu s)$	(%)	Single fit
1	Ion.	0	3.3	76.15(6.80)
2	Ion.	-0.5	3.4	82.94(5.38)
3	Ion.	+0.5	0.9	103.04(7.17)
4	Exc.	0	4.9	78.60(5.19)
5	Ion.	0	2.3	73.09(4.9)
6	Ion.	-0.5	3.0	79.92(5.2)
7	Ion.	+0.5	2.0	79.24(5.0)
			weighted mean :	80.40(2.08)
ref[10]				83.5(1.5)

2023 campain : 9P Lifetimes

9P Lifetime

Possible Variations for final results:

9P Lifetime

Possible Variations for final results:

• Laser Overlap regime

9P Lifetime

Possible Variations for final results:

• Laser Overlap regime

• Laser Overlap regime

9P Lifetime

Possible Variations for final results:

- Laser Overlap regime
- o Background Measurements

9P Lifetime

Possible Variations for final results:

- Laser Overlap regime
- o Background Measurements

$$f(x) = Ae^{-B} + C$$

Scan	Lifetime measurement of 10P32
2695	Beamgate close (after 45min of lifetime measurement). Lasers off
2696	OPO on, trili off
2697	OPO off, trili on
2698	OPO off, trili off

Atomic studies in Fr :

High interest for theoretical model :

- Matrices elements used to constrain model to determine polarisability
- Publication in preparation with the collaboration of Theoretician team of B.K Sahoo

Main Objective

General motivation – Parity non-conservation

Towards the measurements of Parity non-conservation (PNC) in Fr

To date: Most accurate measurement performed on $6 {}^{2}S_{1/2} \rightarrow 7 {}^{2}S_{1/2}$ transition in Cs, relative uncertainty of 0.35 %.

Predicted PNC amplitude in the 7 ${}^{2}S_{1/2} \rightarrow 6$ ${}^{2}D_{3/2,5/2}$ transitions in Fr: more than 50 times larger

« Parity non-conservation » Artistic rendition of the Wu experiment - Aleksandra Sokół

⁽¹⁾ Wood, C. S., S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, et C. E. Wieman. « Measurement of Parity Nonconservation and an Anapole Moment in Cesium ». *Science* 275, n° 5307 (1997)

⁽²⁾ Roberts, B. M., V. A. Dzuba, et V. V. Flambaum. « Parity nonconservation in Fr-like actinide and Cs-like rare-earth-metal ions ». *Phys. Rev. A* 88, nº 1

N-scheme: 4 steps lonization

- \circ Additional laser driving depopulation into the 6D state \rightarrow dip in ion rate
- Excitation to Rydberg states (+plus bonus of characterizing Rydberg series)
- Field ionization = previous new developments necessary

N-scheme: 4 steps lonization

- Excitation to 9P lvl
- Additional laser driving depopulation into the 6D state \rightarrow dip in ion rate
- Excitation to Rydberg states (+plus bonus of characterizing Rydberg series)
- Field ionization = previous new developments necessary 0

- Excitation to Rydberg states (+plus bonus of characterizing Rydberg series)
- Field ionization = previous new developments necessary 0

- \circ Additional laser driving depopulation into the 6D state \rightarrow dip in ion rate
- Excitation to Rydberg states (+plus bonus of characterizing Rydberg series)

Field ionization = previous new developments necessary

- Field ionization = previous new developments necessary

- Additional laser driving depopulation into the 6D state \rightarrow dip in ion rate

36

Excitation to Rydberg states (+plus bonus of characterizing Rydberg series)

Lifetime measurements of 6D_{5/2}

Lifetime measurements of 6D_{5/2}

Lifetime measurements of 6D_{5/2}

Time [ns]

More Atomic measurements in neutral Fr !

More Atomic measurements in neutral Fr !

Fluctuations of the Beam:

- Unable to do High precision Spectroscopy
- At least 2 shifts losts
- Same problem during Antimony ? And Gold ?

Conclusion

Atomic studies in 221 Francium :

- New atomic levels identified in Fr
- Lifetime measurements performed for excited *P*-states
- Identified 6D state (broadband)
- New Rydberg series observed

- More measurements to be done on 6Ds
- Scan Rydberg series further for unambiguous identification
- More precise lifetime measurements
- Ionization potential
- Hyperfine structure of 6Ds

With 6D identification: first stepping stone towards high-precision studies

Acknowledgments

CRIS collaboration

Massachusetts Institute of Technology

sck cen

