Antimony experiment: Overview and preliminary results CRIS collaboration meeting 2025 Abi McGlone

IS736 – August 2024

Physics goals

- Sb (Z=51) lies one proton above the magic Sn, test for singleparticle behaviour from shell-model predictions
- Previous measurements from COLLAPS studied the neutron-rich ¹¹²⁻¹³⁴Sb

Experiment - Technical details

- Regular CRIS mode, set up with a 3 step laser scheme
- Quadrupled light
 - Intra-cavity doubled JyvIS, then externally doubled again
 - No observed problems when scanning
 - Did have to monitor during experiment if lock was lost
 - A strong transition, we were saturating with almost 150uW of first step power downstairs

The University of Manchester

Experiment - Technical details

- Voltage scanning did not work.
 - Spectra too wide ~8GHz for odd cases, started seeing stark shift
- Second step splitting was also wider than expected
- We originally set up with the cobra providing the 560 nm, during the experiment we had to set up the PDL to provide this

Experiment - Second step

- These scans are with the cobra, before switching to PDL
- Two different wavelength setpoints. We probe different parts of the structure as the linewidth of the cobra (~3GHz) is smaller than the second step splitting
- Switching to the PDL ~8GHz eliminated this issue

Experiment - Instabilities

- On/Off behaviour
- Dependent on ToF gating
- We all know since then some problems have been identified with ISCOOL
- CRIS have volunteered to help diagnose this in the coming running period

The University of Manchester

Results - ¹¹¹Sb

- First spectroscopy measurements of ¹¹¹Sb
- 6 good quality scans with plenty of statistics and nicely referenced

The University of Manchester

Results - ¹¹⁰Sb

1824 The University of Manchester

Results - difficulties

Hyperfine Spectra of 117-Sb Scan 2228

-2000

-2000

-2000

-2000

0

-4000

-4000

-4000

-4000

Data

4000

4000

4000

4000

2000

2000

2000

2000

0 Frequency (MHz) The different cuts vary in resolution, intensity, and centroid

But isotope shift seems to remain constant as long as you take the same ToF cut

Fits have a smaller Chisquared when separating out the ToF into different chunks

Results - difficulties

Separated ToFs

ns

Counts per 10 r

Counts per 10 ns 10_1

Hyperfine Spectra of 117-Sb Scan 2228

Fits have a smaller Chi-squared when separating out the ToF into two parts

Using the last half of the ToF yields a smaller FWHM

The University of Manchester

Results - difficulties

Hyperfine Spectra of 117-Sb Scan 2228

Highlighting the difference in centroid

Things to note:

 Currently fitting with b_1 values extracted from ratio – not all free parameters

Results – Reference centroids

- Centroids consistently +-100MHz
- 'Changed' reference halfway through experiment from 123 to 117, but we have enough information from 117 at the start to also use that as a reference throughout
- Typical reference FWHM between 180-250MHz

Results – preliminary moment calculations

MANCHESTER 1824

Results – Next steps

- Applying appropriate corrections
 - Dopplershifting separate parts of ToF
 - Diode corrections for scans where it was not recorded properly
 - There was one evening where the PCCRIS27 was restarted and the diode not properly relocked so the saved wavenumbers on WSU are nonsense
 - Properly constraining hyperfine factors
 - Combining scans in a more sophisticated way
 - More detailed error handling
- Isotope shift and charge radii
 - Discussions with COLLAPS for F and M calculations

Thanks to all CRIS participants who contributed to the experiment,

To the RILIS and targets teams, And to ISOLTRAP for yield measurements

K. M. Lynch¹, M. Athanasakis-Kaklamanakis^{2,3}, S. W. Bai⁴, Y. Balasmeh², T. E. Cocolios², R. P. de Groote², C. Fajardo², K. T. Flanagan^{1,5}, S. Franchoo⁶,
R. F. Garcia Ruiz⁷, S. Geldhof⁸, G. Georgiev⁶, D. Hanstorp⁹, R. Heinke¹⁰, J. D. Holt¹¹
A. Koszorús^{2,12}, L. Lalanne³, Y. C. Liu⁴, Y. S. Liu⁴, A. McGlone¹, W. Nazarewicz¹³
G. Neyens², M. Nichols⁹, F. Pastrana⁷, H. Perrett¹, J. R. Reilly¹ P.-G. Reinhard¹⁴, J. Trujillo², B. van den Borne², J. Wessolek¹, S. Wang¹⁵ S. G. Wilkins⁷ and X. F. Yang⁴.

Backup slides

Experiment - Other things to note

- RILIS was excellent for this experiment, we had no issues
- Using the FIU deflectors could improve the S/N ratio good to know this is an option
- TRLi was slowly dying, we were still suffering from the burned ceramics as well as cooling issues during warm periods
- There was a day of interruption during the experiment, it took 3 shifts to recover
 - We need to make sure that we don't receive interruptions as we found out multiple times this year

Showing how the tof cuts affect everything

200MHz difference in centroid between the two ToF cuts

shift them together

Smaller range early tof

Smaller range late tof

The University of Manchester

Smaller Range, full tof

MANCHESTER 1824 The University of Manchester

full range early tof

full range late tof

full range full tof

