

AcF 2025 proposed plan

Proposal by M. Athanasakis-Kaklamanakis, S.G. Wilkins and M. Au INTC-P-615 15 shifts without protons and **14 with protons**

Carlos M. Fajardo Z. Justus Berbalk

CRIS collaboration meeting, January 2025.

The original proposal and experiment

Motivation

- The heavy octupole deformed nuclei ^{225,227}Ac and the strong internal of polar diatomic molecules makes AcF one of the most sensitives probes of the nuclear Schiff moment.
- The production of Ac ion beams (a non-volatile element) can be greatly enhanced using AcF, providing Ac beams to future experiments.
- Isotope shift measurements on AcF will allow a systematic comparison with its atomic counterpart.
- ²²⁵Ac is one of the few promising radionuclides for α -therapy, being severely limited by its low production.

Goals of the experiment (as in 2021 proposal)

• First measurement of an electronic transition in AcF (as no electronic states were known).

• Isotope shift measurements in ²²⁵⁻²³⁰AcF.

 Ionization potential (IP) and dissociation energy measurements on AcF → require to extract Ac from AcF.

Summary of the 2021 AcF campaign

- Measurement of the $(8)\Pi_1$ state using a two-step scheme.
- Lifetime measurement of the $(8)\Pi_1$ state.
- Presence of a large non-resonant background → Implies existence of metastable states populated in charge exchange (<532 nm from the IP).

 To avoid the large non-resonant background a three-step scheme using 1064 nm was pursued (800 cm⁻¹ already excluded).

KU LEUVEN

Goals of the AcF 2025 campaign.

- 1. Find a three step-scheme on $^{227}AcF \rightarrow$ limiting factor for high resolution and IP search.
- 2. Measure the ionization potential of ²²⁷AcF → current most accurate observable for theory.
- 3. Measure the $(8)\Pi_1$ state using a three-scheme on ²²⁵AcF \rightarrow viability of the scheme in masses where isobaric contamination is present.
- 4. Isotope shift of ²²⁵⁻²³⁰AcF (assuming protons) → comparison between atomic and molecular spectroscopy on Ac.
- 5. High resolution spectroscopy on AcF (if time allows) → next step for high precision spectroscopy.

Proposed plan

First RIS signal

- Two step scheme on ²²⁶RaF ("surface" and plasma mode) → temperature distribution of the molecules and laser/ion overlap reference.
- 2. Two step scheme on ²²⁷AcF (isobaric pure mass).

Metastable state search

Use a binary search to find the metastable state (search based on eliminating regions where the laser-induced background is not present).

Metastable state search

Use a binary search to find the metastable state (search based on eliminating regions where the laser-induced background is not present).

- 1. Gives an additional spectroscopical information.
- 2. The relative position of the metastable state would determine the feasibility of alternative schemes three-step schemes.

Proposed laser schemes

The predicted most intense three step scheme are the following:

Unmeasured region using a three-step

Two three-step scheme were already attempted during the 2022 campaign.

Flowchart for the three-step scheme search

Based on the energy of the metastable state, the search for a three-step scheme is the following.

AcF ionization potential search

- Once a three-step scheme is found, the IP of AcF can be obtained fitting a Sigmoid function of the count rate vs laser wavelength.
- The measurement of the IP has already been attempted with a two-step scheme with no success.
- The search of the IP using the FIU could be attempted, but given the congested Rydberg structure on molecules, its measurement is unlikely.

²²⁴⁻²³¹AcF measurements

1. Once the IP has been retrieved, re-measure the $(8)\Pi_1$ and newly found state using a three-scheme on ²²⁷AcF \rightarrow comparison to a two-step scheme.

- 2. Measurement of the on ²²⁵AcF (non-pure isobaric mass) → viability of future experiments.
- 3. Isotope shift measurements on ²²⁴⁻²³¹AcF → comparison to the already measured atomic data (winter physics dependent).

4. High resolution spectroscopy on ²²⁴AcF (I = 0) or ²²⁷AcF (I = 3/2) (if time allows).

Requirements for the experiment.

1. Given the large scanning range required for each laser, position and power stabilization systems are needed.

2. In case scheme b) (using a 1064 non-resonant step) is successful, the measurement of the IP could only be performed using the OPO, meaning that a spectrometer to record the OPO wavelength would be needed.

3. Since some of the schemes would require having more than one broadband TiSa laser, a second scannable TiSa laser would be helpful (upgrade the Z-cavity?).

Thanks for your attention

Backup slides

Rydberg states in molecules

Molecular Rydberg series are divided based on the orbital angular momentum (like in atoms).

However, each member of a given series can be seen as a "normal" electronic state, composed by vibrational and rotational states, creating a considerably congested electronic structure.

Т	В	γ *10¹	$\gamma_{\rm D} * 10^3$
26245.0	0.2264		
31606.238	0.23031590	-0.04957	0.000790
34163.039 (6)	0.231262 (20)	-0.1230 (68)	
35575.814 (4)	0.233574 (37)	0.2932 (73)	0.1571 (72)
36424.552 (2)	0.232245 (21)	-0.2303 (38)	0.0192 (40)
36976.545 (4)	0.231904 (34)	-0.2817 (66)	0.0197 (67)
37351.215 (3)	0.232152 (12)	-0.1619 (36)	
37619.761 (4)	0.234144 (32)	-0.2312 (74)	0.0514 (53)
37816.745 (2)	0.232307 (9)	-0.1776 (25)	0.0094 (11)
37967.246 (6)	0.231392 (77)	-0.2090 (140)	
38083.247 (3)	0.232513 (30)	-0.1748 (59)	0.0236 (59)
38175.496 (2)	0.232519 (30)	-0.1573 (50)	
34689.057(30)	0.230122 (51)	-0.412 (12)	
35736.274 (3)	0.229354 (11)	-0.4948 (33)	
37488.301(30)	0.231756 (59)	-0.376 (17)	
37510.482(30)	0.237086 (144)	-0.486 (27)	
	T 26245.0 31606.238 34163.039 (6) 35575.814 (4) 36424.552 (2) 36976.545 (4) 37351.215 (3) 37619.761 (4) 37816.745 (2) 37967.246 (6) 38083.247 (3) 38175.496 (2) 34689.057(30) 35736.274 (3) 37488.301(30) 37510.482(30)	TB26245.00.226431606.2380.2303159034163.039 (6)0.231262 (20)35575.814 (4)0.233574 (37)36424.552 (2)0.232245 (21)36976.545 (4)0.231904 (34)37351.215 (3)0.232152 (12)37619.761 (4)0.234144 (32)37816.745 (2)0.232307 (9)37967.246 (6)0.231392 (77)38083.247 (3)0.232513 (30)38175.496 (2)0.230122 (51)35736.274 (3)0.229354 (11)37488.301(30)0.237086 (144)	TB $γ*10^1$ 26245.00.226431606.2380.23031590-0.0495734163.039 (6)0.231262 (20)-0.1230 (68)35575.814 (4)0.233574 (37)0.2932 (73)36424.552 (2)0.232245 (21)-0.2303 (38)36976.545 (4)0.231904 (34)-0.2817 (66)37351.215 (3)0.232152 (12)-0.1619 (36)37619.761 (4)0.234144 (32)-0.2312 (74)37816.745 (2)0.232307 (9)-0.1776 (25)37967.246 (6)0.231392 (77)-0.2090 (140)38083.247 (3)0.232513 (30)-0.1778 (59)34689.057(30)0.230122 (51)-0.412 (12)35736.274 (3)0.229354 (11)-0.4948 (33)37488.301(30)0.237086 (144)-0.486 (27)

Table 9: Effective molecular constant (in cm⁻¹) for the $0.88^{2}\Sigma^{+}$ series.

Note: The centrifugal distortion constant is held fixed at 0.16×10^{-6} cm⁻¹.

A suspect peak from 2022

From the data set taken on 2022, a small RIS seem to have been overserved at around 41,423 cm-1. However, the recorded data is not enough to clearly resolve a peak. The remeasurement of this peak would be attempted.

Two-step scheme search in 2022

The measurement of AcF IP was attempted using a double TiSa scheme with no success.

KU LEUVEN

OPO laser power at 100Hz

