Evolution of ground state properties of Chromium isotopes from stability to the N = 40 Island of Inversion

Louis Lalanne IPHC / CNRS

CRIS Collaboration meeting 31/01/2024

Introduction

Shell evolution between Ca and Ni:

- Sub-shell closure at *N*=32,34 around ^{52,54}Ca
- Sign for a weak sub-shell closure at N=40 in ⁶⁸Ni
- N=40 Island of Inversion (IoI) around ⁶⁴Cr

The Cr isotopes:

- Half filled $f_{7/2} \rightarrow$ strongest *p*-*n* collectivity
- Mass : gradual increase of collectivity and deformation from *N*=34 onward (1)
- Competing nuclear shapes in ⁶²Cr (2)
- 64 Cr predicted center of the *N*=40 Island of Inv. (3)
- No firm assignment of g.s. spins
- No radii or moments known outside stability

Goals:

First measurement of electromagnetic g.s. properties of neutron rich Cr outside stability

- Better understand the structure of the odd-A Cr ground states
- \blacktriangleright Investigate the structural changes along the chain and the formation of the N=40 IoI

Z = 28	⁵⁶ Νi _{β+}	⁵⁷ Νi _{β+}	⁵⁸ Νi _{2β+}	⁵⁹ Νi _{β+}	⁶⁰ Ni _{Stable}	⁶¹ Ni _{Stable}	⁶² Ni _{Stable}	⁶³ Ni ⊮	⁶⁴ Ni _{Stable}	⁶⁵ Ni ₅	⁶⁶ Ni _β .	⁶⁷ Ni ₅	⁶⁸ Ni _{β-}
	⁵⁵ Co _{β+}	⁵⁶ Cο _{β+} Ο	⁵⁷ Co e- capture	⁵⁸ C₀,β+	⁵⁹ Co _{Stable}	⁶⁰ Co	⁶¹ Со _{β-} 0	⁶² Со _β	⁶³ Со _{β-}	⁶⁴ Со	⁶⁵ Со _{β-}	⁶⁶ Со	⁶⁷ Со _{β-}
	⁵⁴ Fe 2β+	⁵⁵ Fe e- capture	⁵⁶ Fe _{Stable}	⁵⁷ Fe _{Stable}	⁵⁸ Fe	⁵⁰Fe	⁶⁰ Fe	⁵¹Fe	⁶² Fе	⁶³ Fe	⁶⁴ Fе	⁶⁵ Fe	⁶⁶ Fе _{β-}
	⁵³ Mn e- capture	⁵⁴ Mn e- capture	⁵⁵ Mn _{Stable}	⁵⁵Mn	⁵⁷ Mn ₅	⁵ ⁸ Mn	⁵⁹ Mn	⁶⁰ Μn	⁶¹ Mn ₅	⁶² Mn	⁶³ Μn	⁶⁴ Mn	⁶⁵ Μn
Z = 24	⁵² Cr _{Stable}	⁵³ Cr _{Stable}	54Cr Stable	⁵⁵Cr	⁵⁶ Cr ₅	⁵⁷ Cr ₅	⁵⁸ Cr ₅	⁵⁹ Cr	⁶⁰ Cr β∙	⁶¹ Cr ⊮	⁶² Сг _в .	⁶³ Cr ₅	⁶⁴ Cr β−
	⁵¹ V _{Stable}	⁵² ₩ β-	⁵³ Υ β-	⁵⁴ ₩ β-	⁵⁵ γ	⁵⁶ ₩ β-	⁵⁷ Υ β-	⁵⁸ γ β-	⁵⁹ Υ β-	⁶⁰ У _{β-}	⁶¹ V _β .	⁶² У _{β-}	⁶³ У _{β-}
	50Ti _{Stable}	51 ⊤i ₽	⁵² Ті _{β-}	⁵³ ⊤i	⁵⁴ Ti β-	⁵⁵ ⊤i ⊮	⁵⁶ Ті _{β-}	⁵⁷ Ті _β .	⁵⁸ ⊤i ₅	⁵⁹ ⊤i ⊮	⁶⁰ Ті _β .	⁶¹ Ті _в	⁶² Ті _{β-}
	⁴⁹ Sc _{β-}	⁵⁰Şc	⁵¹ Sc _β	⁵² Sc ₅	⁵³ Sc β-	⁵⁴ Sc	55 Sc	⁵⁶ Sc	⁵⁷ Sc β-	⁵⁸ Sc	⁵⁹ Sc _β .	⁶⁰ Sс	⁶¹ SC _{β-}
Z = 20	⁴⁸ Са 2β-	⁴⁹ Са	⁵°Ca	⁵¹Ça	⁵² Са	⁵³Ça	⁵⁴ Са	⁵⁵Ça	⁵⁶ Са	⁵⁷ Ca	⁵⁸ Са	⁵⁰Ca	⁶⁰ Са _{β-}
N = 28 $N = 32$ $N = 34$ $N = 4$									N = 40				

The Cr experiment

- RILIS scheme development nov. 2022:
 → Very efficient and selective blue-blue-red, Ti:Sa only scheme, using AI
- Suffered from very large isobaric stable molecules ^{61,62,63}Cr ~ 3000, 600, few 10th of pps
- ⁶³Cr observed but nothing can be extracted (futur proposal?)

Cr Experiment, 7 days, Jully 2023:

- ⁵⁰⁻⁶³Cr beams @ ISOLDE
- UC target + RILIS
- MT + DSS
- no sensitivity to Q

2nd Paper: Spin and moments of neutron rich Cr isotopes 4

2nd Paper: Spin and moments of neutron rich Cr isotopes 5

^{2nd} Paper: Spin and moments of neutron rich Cr isotopes ⁶

^{2nd} Paper: Spin and moments of neutron rich Cr isotopes ⁷

g-factor :
$$g = \frac{\mu}{I\mu_N}$$

 \rightarrow Sensitive to orbitals occupied by valence nucleons

- ${}^{51}Cr (N=27) \rightarrow v f_{7/2}$ configuration
- 53,55,57 Cr (N=29, 31, 33) $\rightarrow v p_{3/2}$ configuration
- ^{59,61}Cr (N=35, 37) $\rightarrow v p_{1/2}$ configuration
 - No strong deviation from eff. s.p. value
 - N=37 config. moving from $v f_{5/2}$ in Ni (Z=28) to $v p_{1/2}$ in Cr (Z=24) due to deformation

Status of the paper :

- Writing almost finalized
- To be submitted to PRC or EPJA

Spin 61 Cr found to be 1/2, disagrees with 5/2 assignment from literature

Spin ⁶¹Cr found to be 1/2, disagrees with 5/2 assignment from literature
➤ Spin-parity assignment of first two ⁶¹Cr excited state from multipol.

11

Magnetic dipole moment:

 $\mu_{\text{SM, BM1 bare operator}} (^{61}\text{Cr}) = +0.558 \ \mu_N$ $\mu_{\text{exp}} (^{61}\text{Cr}) = +0.539(7) \ \mu_N$

Occupations:

⁶¹ Cr	$f_{7/2}$	$p_{3/2}$	$f_{5/2}$	$p_{1/2}$	<i>8</i> 9/2	$d_{5/2}$
р	3.33	0.29	0.33	0.04		
n	8.0	3.78	2.49	1.07	1.46	0.19

Shell Model and DNO calculations at IPHC (F. Nowacki and D.D. Dao):

- \checkmark Reproduces magnetic moment within experimental error bars
- ✓ Reproduces $1/2^{-}$ g.s. spin-parity
 - > 2p-2h neutron intruder configuration with lonely $p_{1/2}$ neutron
 - ➢ Triaxiality of ⁶¹Cr ground state

Shell Model and DNO calculations at IPHC (F. Nowacki and D.D. Dao):

- \checkmark Reproduces magnetic moment within experimental error bars
- ✓ Reproduces $1/2^{-}$ g.s. spin-parity
 - > 2p-2h neutron intruder configuration with lonely $p_{1/2}$ neutron
 - ➢ Triaxiality of ⁶¹Cr ground state
 - \blacktriangleright ⁶¹Cr makes the transition between the 2p-2h and the 4p-4h regime of the N=40 IoI

Quantum phase transition at the entrance of the N=40 IoI

Status of the paper :

- Submitted to PRL
- Not accepted first round, second submission under preparation

```
arXiv:2409.07324
```

13

$$\delta v_i^{A,A'} = \frac{A - A'}{AA'} M_i + F_i \,\,\delta \langle r^2 \rangle^{AA'}$$

 F and M determined from King plot using model independent absolute radii values ⁽¹⁾ (muonic+e⁻ scat.) and average of lit. + CRIS IS

$$\delta v_i^{A,A'} = \frac{A - A'}{AA'} M_i + F_i \,\,\delta \langle r^2 \rangle^{AA'}$$

- F and M determined from King plot using model independent absolute radii values ⁽¹⁾ (muonic+e⁻ scat.) and average of lit. + CRIS IS
- Strong kink observed at N=28, in good agreement
- Steep increase of the Cr charge radii between N=28 and N=32 following closely the Ca trend \rightarrow Z independent behaviour
- Clear change of slope at N=34 between deformed Cr, and spherical Ni. Also seen in Mg
- Strong odd-even staggering of the Cr radii for N>34

(1) J. W. Lightbody et al., PRC 27, 1 (1983)

Not a single theory on the market can describe the evolution of the radii approaching the IoI

M. Kortelainen, Z. Sun, G. Hagen, W. Nazarewicz, T. Papenbrock, and P.G. Reinhard, Phys. Rev. C 105, L021303 2022
 U. C. Perera, A. V. Afanasjev, and P. Ring, Phys. Rev. C 104, 064313 2021
 <u>V. Somà, C. Barbieri, T. Duguet & P. Navrátil</u>, EPJA 57, 135 (2021)

DZ:
$$\rho_{\pi}^{sc} = \rho_{\pi} + \mathcal{D}, \quad \mathcal{D} = \lambda S_{\pi} S_{\nu} + \mu Q_{\pi} Q_{\nu}.$$

 $\sqrt{\langle r_{\pi}^2 \rangle} \approx \rho_{\pi} = A^{1/3} \left(\rho_0 - \frac{\zeta}{2} \frac{t}{A^{\sigma}} - \frac{v}{2} \left(\frac{t}{A} \right)^2 \right) e^{(g/A)}$

Phenomenological macroscopic formula from : J. Duflo, A.P. Zucker, Phys. Rev. C 66 (2002) 051304(R)

DZ:
$$\rho_{\pi}^{sc} = \rho_{\pi} + \mathcal{D}, \quad \mathcal{D} = \lambda S_{\pi} S_{\nu} + \mu Q_{\pi} Q_{\nu}.$$

 $\sqrt{\langle r_{\pi}^2 \rangle} \approx \rho_{\pi} = A^{1/3} \left(\rho_0 - \frac{\zeta}{2} \frac{t}{A^{\sigma}} - \frac{v}{2} \left(\frac{t}{A} \right)^2 \right) e^{(g/A)}$

Phenomenological macroscopic formula from : J. Duflo, A.P. Zucker, Phys. Rev. C 66 (2002) 051304(R)

SM :

 $DZ + coeff * \pi p$ orbitals occupancies

 $p_{1/2}$

 $f_{5/2}$

 $p_{3/2}$

DZ:
$$\rho_{\pi}^{sc} = \rho_{\pi} + \mathcal{D}, \quad \mathcal{D} = \lambda S_{\pi} S_{\nu} + \mu Q_{\pi} Q_{\nu}.$$

 $\sqrt{\langle r_{\pi}^2 \rangle} \approx \rho_{\pi} = A^{1/3} \left(\rho_0 - \frac{\zeta}{2} \frac{t}{A^{\sigma}} - \frac{v}{2} \left(\frac{t}{A} \right)^2 \right) e^{(g/A)}$

Phenomenological macroscopic formula from : J. Duflo, A.P. Zucker, Phys. Rev. C 66 (2002) 051304(R)

SM :

 $DZ + coeff * \pi p$ orbitals occupancies

- → Just add one parameter, proportional to the proton p orbits occupancies reproduce exp. data very well
- \rightarrow Deviation from DZ at N \geq 36, where deformation arise

Interpretation :

- stronger deformation \rightarrow stronger quadrupole correlation \rightarrow stronger mixing between $\Delta l = 2$ protons *f* and *p* orbits.
- Small mixing difference due to deformation are seen in the charge radii. Related to the halo character of the *p* orbits probed by *coeff*

Status of the paper :

• Interpretation still ongoing; to be submitted to Nature

Conclusion

- 61 Cr as a Doorway to the N=40 Island Of Inversion
 - \rightarrow Moment and spin of ⁶¹Cr, implication on decay data
 - \rightarrow Quantum Phase Transition identified at the entrance of the N=40 IoI
 - \rightarrow Submitted to PRL, not accepted first round, to be resubmitted
- Spin and moment of neutron rich Cr isotopes
 - \rightarrow First moment and spin measurement of odd-A neutron rich Cr isotopes
 - \rightarrow Evolution of configuration mixing in the Ca-Ni region
 - \rightarrow Calculations to be performed, writing almost finished, to be submitted to PRC or EPJA
- Charge radii of Cr isotopes entering the N=40 IoI : the ultimate probe of the wavefunction
 - \rightarrow Signature of rising deformation entering the N=40 Island of Inversion
 - → First microscopic interpretation of radii within IoI with SM calculations, evidence for halo proton *p* orbits
 - → Interpretation to be finalized, writing to be started. Submission to Nature/Nature Physics by the end of the year

The collaboration

The University of Manchester

L. Lalanne,^{1,2,3,*} M. Athanasakis-Kaklamanakis,^{1,2} D.D. Dao,³ Á. Koszorús,¹ Y. C. Liu,⁴ R. Mancheva,^{2,1}
F. Nowacki,³ J. Reilly,⁵ C. Bernerd,² K. Chrysalidis,² T. E. Cocolios,¹ R. P. de Groote,¹ K. T. Flanagan,⁵ R. F. Garcia Ruiz,⁶ D. Hanstorp,⁷ R. Heinke,¹ M. Heines,¹ P. Lassegues,¹ K. Mack,⁵ B. A. Marsh,² A. McGlone,⁵ K. M. Lynch,⁵ G. Neyens,¹ B. van den Borne,¹ R. Van Duyse,¹ X. F. Yang,⁴ and J. Wessolek^{5, 2}
¹KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
²CERN, CH-1211 Geneva 23, Switzerland
³Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
⁴School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
⁵Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
⁶Massachusetts Institute of Technology, Cambridge, MA 02139, USA
⁷Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden

UNIVERSITY OF GOTHENBURG

THANK YOU FOR YOUR ATTENTION

