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HFS spectra and data of Zn isotopes at CRIS
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1.Lu, Q:82Zn
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1.Lu, Q:82Zn

2. Core excitations of 78Ni is necessary to reproduce the moments of 3'Zn
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Status of the paper: Preliminary draft Theoretically check is on going



2. Radii of 81.82Zn
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2. Radii of 81.82Zn
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2. Radii of 81.82Zn

Shell effect or deformation?
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2. Radii of 81.82Zn
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Offline Zn data @ 2019
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Offline Zn data
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Offline Zn data
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Offline Zn data

Hyperfine structure constants of the Zn atom
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Hyperfine interaction matrix elements were calculated
using the relativistic Fock-space coupled cluster (FS-
RCC) theory [1-3]. To obtain the basic value of the
property matrix element, the CCSD approximation was
used, and the intermediate Hamiltonian (IH) technique
formulated for incomplete main model spaces was used
to bypass the intruder states problem and ensure stabil-
ity of the solution of CC amplitude equations [4]; energy
denominators corresponding to excitations from buffer
state determinants were shifted to the frontier energy
chosen to be equal to -1.3 a.u. (this approximately corre-
sponds to the energy of the 4s? determinant). The active
space comprised 4spdf, Sspdf, 6spd, Tsp spinors of the
Zn?* ion. The main model space in the target 0h2p Fock
space sector (two particles over closed shells) were com-
posed of Slater determinants corresponding to the 4s2,
4s5s, 4s6s, 4sdp, 4sbp, 4s6p, 4sdd, 4s5d, 4s4f configu-
rations. At the ITH-FS-RCCSD stage all electrons of Zn
were correlated, the virtual spectrum cutoff was chosen
to be 2000 Hartree. Corrections for connected triple exci-
tations were calculated as the differences between the val-
ues of matrix elements obtained at the FS-RCCSDT [5]
and FS-RCCSD levels for the reduced problem with the
2p3s3p shells of Zn excluded from correlation calcu-
lation and virtual space cutoff equal to +1.0 a. u. Such
an approach, further denoted as FS-RCCSD+AT, was
previously applied to calculate electric field gradient at
nucleus in atomic bismuth [6]. Calculations with triples
were performed not within the IH framework, but the
dynamical energy denominator shift technique [3, 7] was
used to achieve convergence of amplitude equations (in
this particular case, the intruder state problem is the
most severe for CCSDT calculations in the 0hlp Fock
space sector). The uniform values of the shift parame-
ters So = —1.0 a. u. and S3 = —1.5 a. u. were used
for double and triple excitation amplitudes, respectively,
in the Ohlp and 0h2p Fock space sectors; the real sim-
ulation of an imaginary shift formula from [8] with the
attenuation parameter n = 3 was used. Note that the
final values of A and B constants (Tab. I) were found
to be quite stable with respect to the IH and shifting

ls

parameters (see below for the discussion on uncertainty
estimates).

Basic FS RCCSD values of diagonal hyperfine in-
teraction matrix elements were calculated using the
finite-difference approach. The second-order analytic
connected expression for effective one-electron opera-
tors [9] was used to calculate matrix elements within
the FS RCCSDT approximation. The same second-order
method was also employed to calculate off-diagonal hy-
perfine matrix elements.

The four-component Dirac-Coulomb Hamiltonian was
used in all calculations.  Basis set was based on
the Dyall's aedz basis set [10] extended by additional
functions: it comprised (33s25p21d12f5g3h3i) primitive
Gaussian functions. All coupled cluster calculations were
carried out using the EXP-T program package [11. 12],
while the DIRAC software [13, 14] was used to obtain
transformed molecular integrals.

There are three main sources of uncertainties which
may influence the overall accuracy of calculation. The
first one arises from the intermediate Hamiltonian ap-
proach employed in CCSD calculations. To estimate the
IH error the series of calculations with different parame-
ters of TH (attenuation parameter n, frontier energy E)
varying in wide ranges (n = 1 —5 and E = —1.3... — 0.9)
were employed and the maximum deviation between the
obtained matrix elements was regarded as an estimate
of the uncertainty arising from IH. The second uncer-
tainty is associated with an incomplete accounting for
triple and higher excitations and it was estimated to be
equal to half the correction for triple excitations (note
that for diagonal elements the lack of higher excitations
is a dominating source of error). The third uncertainty is
specific for off-diagonal matrix elements and is due to the
lack of higher-order contributions in the second-order an-
alytic scheme employed: corresponding uncertainty was
estimated based on the differences between finite-order
and finite-field values obtained for corresponding diag-
onal elements. The final uncertainty was calculated as
a root of the sum of squares of uncertainties described
above.

FS-RCCSD(FF)+AT:
a new technique for calculating off-diagonal
matrix elements at the FS-CCSDT level.
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Offline Zn data
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Offline Zn data
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