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Summary

I Parton showers

I Matching parton showers and NLO computations

I MC@NLO

I Automatic MC@NLO

I POWHEG
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Generalities
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Preamble

I Perturbation theory formally offers a systematic way to approximate the prediction
for any physical observable. But one should not emphasize the word ”systematic”,
since the behavior of perturbation theory depends crucially on the observable one is
considering.

I There are lots of observables that are perfectly well-behaved in this perturbative
approach, i.e. that show a good convergence behavior. In particular, sufficiently
inclusive observables are well described and for them, neglecting higher orders, is
really a small correction.
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Preamble

I But more exclusive observables will in general be poorly described in perturabtion
theory.
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Preamble

Rikkert Frederix, University of Zurich

NLO...?
Are all (IR-safe) observables that we can compute using a NLO  
calculation correctly described at NLO?

It depends on the observable...

In the small transverse momentum region, this calculation breaks 
down (it’s even negative in the first bin!), and anywhere else it is 
purely a LO calculation for V+1j
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Preamble

I But more exclusive observables will in general be poorly described in perturabtion
theory.

I One could take the conservative attitude of considering only perturbatively
well-behaved observables. But thus one would miss an extremely rich variety of
observables which may play important roles in experimental analyses.

I If perturbation theory breaks down for an observable, this does NOT mean that
observable is useless / unimportant: it is just that one is not using the good tools to
describe it.

I It is better to try and find a way to reorganize the computation in order to take into
account emissions in the singular regions of the phase space, to all orders in
perturbation theory.

I As a not so trivial truth, this can be done in a systematic way.
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Parton Showers
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Collinear factorization

a
c

b

a
c

bMn+1 Mn

 Cross section factorization in the collinear limit

|Mn+1|2dΦn+1 � |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

•        virtuality of particle    (could be its     or       ...)
   it represents the hardness of the branching
•        energy fraction of parton   relative to 
•                  Altarelli - Parisi splitting kernel

p⊥a Eaθ

z =

t =

b a

Pa→bc(z) =

θ

θ −→ 0

PSMC I: collinear factorization

Consider a massless particle that splits into a pair of massless particles separated by a
small angle θ.

I In the limit of θ → 0 the parent particle goes on shell: its branching is thus related
to time scales which are very long with respect to the core interaction (hard
subprocess).

I The inclusion of such a branching can not completely change the pictures set up by
the hard process: the whole emission process should be writeable in this limit as the
basic one times some branching probability.

I The first task of Monte Carlo physics is actually to make this statement quantitative.
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 Cross section factorization in the collinear limit

|Mn+1|2dΦn+1 � |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

•        virtuality of particle    (could be its     or       ...)
   it represents the hardness of the branching
•        energy fraction of parton   relative to 
•                  Altarelli - Parisi splitting kernel

p⊥a Eaθ

z =

t =

b a

Pa→bc(z) =

θ

θ −→ 0

PSMC I: collinear factorization

Cross section factorization in the collinear limit (universal !!):

|Mn+1|2dΦn+1 ' |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z).

Notice that what has been roughly called ”branching probability” is actually a singular
factor, so one will need to make sense precisely of this definition.
This is the leading contribution to the n + 1-body cross section (fixed the energies
involved).

I Pa→bc(z) = Altarelli-Parisi splitting kernel:

Pg→qq(z) = TR

[
z2 + (1− z)2

]
, Pg→gg (z) = CA

[
z(1− z) +

z

1− z
+

1− z

z

]
,

Pq→qg (z) = CF

[
1 + z2

1− z

]
, Pq→gq(z) = CF

[
1 + (1− z)2

z

]
.
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|Mn+1|2dΦn+1 � |Mn|2dΦn
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2π

αS

2π
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•        virtuality of particle    (could be its     or       ...)
   it represents the hardness of the branching
•        energy fraction of parton   relative to 
•                  Altarelli - Parisi splitting kernel

p⊥a Eaθ

z =

t =
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Pa→bc(z) =

θ

θ −→ 0

PSMC I: collinear factorization

Cross section factorization in the collinear limit (universal !!):

|Mn+1|2dΦn+1 ' |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z).

I t can be called the ”evolution variable” (will become clearer later): it can be the
virtuality m2 of particle a (i.e. p2

a), its p⊥ or t̃ = E 2
a θ

2 ...
It represents the hardness of the branching and tends to 0 in the collinear limit.

I Indeed in the collinear limit one has m2 = z(1− z)θ2E 2
a , p2

T = zm2, so that the
factorization takes place for all these definitions: dθ2/θ2 = dm2/m2 = dp2

T/p
2
T .
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|Mn+1|2dΦn+1 � |Mn|2dΦn
dt

t
dz

dφ

2π
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•        virtuality of particle    (could be its     or       ...)
   it represents the hardness of the branching
•        energy fraction of parton   relative to 
•                  Altarelli - Parisi splitting kernel

p⊥a Eaθ

z =

t =

b a

Pa→bc(z) =

θ

θ −→ 0

PSMC I: collinear factorization

Cross section factorization in the collinear limit:

|Mn+1|2dΦn+1 ' |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z).

I z = is the ”energy variable”: it can be defined as the relative energy of b, i.e.
Eb/Ea, ...
It represents the energy sharing between b and c and tends to 1 in the soft limit
(daughter c going soft).

I φ = azimuthal angle between the polarization of a and the plane of branching.

Paolo Torrielli (EPFL) Interfacing NLO with Parton Showers ThinkTank on Physics @ LHC 13 / 83



Collinear factorization

a
c

b

a
c

bMn+1 Mn

 Cross section factorization in the collinear limit

|Mn+1|2dΦn+1 � |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

•        virtuality of particle    (could be its     or       ...)
   it represents the hardness of the branching
•        energy fraction of parton   relative to 
•                  Altarelli - Parisi splitting kernel

p⊥a Eaθ

z =

t =

b a

Pa→bc(z) =

θ

θ −→ 0

PSMC I: collinear factorization

Cross section factorization in the collinear limit:

|Mn+1|2dΦn+1 ' |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z).

I Why isn’t there a t2 in the denominator? This is the square of an amplitude that
explicitly features a 1/t.

I Take for example the splitting q → qg : helicity is conserved for the quarks, so the
final state spin is differs by one unity with respect to the initial one. The scattering
happens in a p- wave (orbital angular momentum =1), so it is suppressed as t → 0.

I Indeed a factor pb · pc always appears at the numerator if one performs the explicit
computation.
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Multiple emission
PSMC II: multiple emission

a
c

b
e

dθ
θ�

a
c

bMn

θ, θ� −→ 0
θ� � θ

e
dMn+2

|Mn+2|2dΦn+2 � |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

dt�

t�
dz�

dφ�

2π

αS

2π
Pb→de(z

�)

Factorized rate for multiple emission

Parton Shower Monte Carlo knows about the Leading 
Logarithmic (LL) collinear approximation of the total rate

σn+j ∝
� Q2

Q2
0

dt

t

� t

Q2
0

dt�

t�
...

� t(j−2)

Q2
0

dt(j−1)

t(j−1)
∝ σn

�αS

2π

�j

logj(Q2/Q2
0)

Now consider Mn+1 as the new core process and use the recipe we used for the first
emission in order to get the dominant contribution to the n + 2-body cross section: add a
new branching at angle much smaller than the previous one:

|Mn+2|2dΦn+2 ' |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

dt′

t′
dz ′

dφ′

2π

αS

2π
Pb→de(z ′).

This can be done for an arbitrary number of emissions. The recipe to get the leading
collinear singularity is thus cast in the form of an iterative sequence of emissions whose
probability does not depend on the past history of the system, so a Markov chain.
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Multiple emission PSMC II: multiple emission
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Factorized rate for multiple emission

Parton Shower Monte Carlo knows about the Leading 
Logarithmic (LL) collinear approximation of the total rate

σn+j ∝
� Q2

Q2
0

dt

t

� t

Q2
0

dt�

t�
...

� t(j−2)

Q2
0

dt(j−1)

t(j−1)
∝ σn

�αS

2π

�j

logj(Q2/Q2
0)

The dominant contribution to the cross section comes from the region where the
subsequently emitted partons satisfy the strong ordering requirement: θ � θ′ � θ′′....
Indeed the rate for multiple emission in the branching sequence is

σn+k ∝ αk
S

∫ Q2

Q2
0

dt

t

∫ t

Q2
0

dt′

t′
...

∫ t(k−2)

Q2
0

dt(k−1)

t(k−1)
∝ σn

(αS

2π

)k
logk(Q2/Q2

0 ),

where Q is a typical hard scale and Q0 is a small infrared cutoff that separates
perturbative from non perturbative regimes.
The logarithm can easily be large. It is thus clear that perturbation theory breaks down
since the effective coupling is αS log(Q2/Q2

0 ) instead of just αS.
The previous formula shows that Monte Carlo simulations know about the leading
logarithmic collinear approximation of the total rate.
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Absence of interference

I The branching sequence from a given leg, the parton shower, is the description of
the history of that leg starting from the hard subprocess all the way down to the non
perturbative region.

I Suppose you want to describe two such histories, the showers from two different legs
that are present at the hard subprocess level: then these two showers are treated in
a completely uncorrelated way. And even within the same history, subsequent
emissions are uncorrelated.

I The parton shower misses all the variety of interference effects between the various
legs: the single branching just knows about the kinematics and the identity of the
parent particle, so the extreme simplicity comes with the price of quantum
inaccuracy.

I Nevertheless, this captures the leading singularities, so it gives the amazing
possibility of having a good description of an arbitrary number of emissions.

I It is a resummed computation, half the way between perturbation theory and non
perturbative approach.
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Leading color

I Since the Monte Carlo is missing interference effects in the multiple particle emission
chain, also the color flow between the various QCD particles emitted is only
approximately described.

I In particular, interference effects are always suppressed by some power of the color
number Nc , so, avoiding the description of interference effects implies the color flow
description is correct only in the limit Nc →∞.

Nc
N3

c

Tuesday, December 6, 2011
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Emission probability and Sudakov form factor

Try and give a meaning to the word ”branching probability” used before.
Differential probability for the branching a→ bc between scales t and t + dt knowing
that no emission occurred before:

dp(t) =
∑
bc

dt

t

∫
dz

dφ

2π

αS

2π
Pa→bc(z).

Starting from a scale Q2, the probability that the parent parton has not splitted at a
smaller scale t it is the product of the probabilities that it did not split in any interval dtk
between Q2 and t.
Probability that particle a does not emit between scales Q2 and t:

∆(Q2, t) =
∏
k

[
1−

∑
bc

dtk
tk

∫
dz

dφ

2π

αS

2π
Pa→bc(z)

]
=

exp

[
−
∑
bc

∫ Q2

t

dt′

t′
dz

dφ

2π

αS

2π
Pa→bc(z)

]
= exp

[
−
∫ Q2

t

dp(t′)

]
.

I ∆(Q2, t) is the Sudakov form factor.

I Property: ∆(A,B) = ∆(A,C)∆(C ,B).
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Note

I This is actually similar to what one gets in considering a radioactive decay of a
nucleus: there one has that the number of survived nuclei at time t changes as

dN(t)

dt
= −c(t)N(t),

so that the differential emission probability at time t is

dP(t) = dN(t)/N(0) = −c(t) exp

(
−
∫ t

0

c(t′)dt′
)
.

I In the branching case, one has that the role of the decay time is played by the
virtuality (or similar) of the parent particle, and the full ensemble of events has a
distribution in this variable.
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Unitarity

Define dPk as the probability for n ordered splittings from leg a at given scales:

dP1(t1) = ∆(Q2, t1) dp(t1)∆(t1,Q
2
0 ),

dP2(t1, t2) = ∆(Q2, t1) dp(t1) ∆(t1, t2) dp(t2) ∆(t2,Q
2
0 )Θ(t1 − t2),

... = ...

dPk(t1, ..., tk) = ∆(Q2,Q2
0 )

k∏
l=1

dp(tl)Θ(tl−1 − tl).

Integrate: probability for k splittings:

Pk ≡
∫

dPk(t1, ..., tk) = ∆(Q2,Q2
0 )

1

k!

[∫ Q2

Q2
0

dp(t)

]k
, ∀k = 0, 1, ...

Sum of probabilities:

∞∑
k=0

Pk = ∆(Q2,Q2
0 )
∞∑
k=0

1

k!

[∫ Q2

Q2
0

dp(t)

]k
= ∆(Q2,Q2

0 ) exp

[∫ Q2

Q2
0

dp(t)

]
= 1.
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Unitarity
Cross section for 0 or 1 emissions from leg a in the parton shower:

dσ

σn
= ∆(Q2,Q2

0 ) + ∆(Q2,Q2
0 )
∑
bc

dz
dt

t

dφ

2π

αS

2π
Pa→bc(z).

Expand at first order in αS:

dσ

σn
' 1−

∑
bc

∫ Q2

Q2
0

dt′

t′
dz

dφ

2π

αS

2π
Pa→bc(z) +

∑
bc

dz
dt

t

dφ

2π

αS

2π
Pa→bc(z).

I Same structure of the two latter terms, with opposite signs: cancellation of
divergences between the approximate virtual and approximate real emission cross
sections.

I The probabilistic interpretation of the shower ensures that infrared divergences will
cancel for each emission.
The cancellation of infinities comes simply out as the basic statement that
P(emission) + P(no emission) = 1, without any computational efforts.

I As in e+e− → hadrons, one can define jets with different algorithms, and the jet
separation will play the role of the regulator Q0. Unitarity is implemented by
σNLO = σ2 + σ3, and in that case one can perfectly define probabilities for jet
multiplicity i as σi/σNLO.
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Azimuthal kernels

I Recall the factorization formula

|Mn+1|2dΦn+1 ' |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z).

This formula is actually cheating in one point: the integration on the azimuthal
angle.

I One can prove that if one performs the integration on dφ, the formula, azimuthally
averaged, is valid.

I But: if one wants a description exclusive in the angle, then, depending on the parent
particle, another term may arise, so that the completely correct formula is actually:

|Mn+1|2dΦn+1 ' dΦn
dt

t
dz

dφ

2π

αS

2π
(Pa→bc(z)|Mn|2 + Qa→bc(z)|M̃n|2).

I Q is called azimuthal kernel, and it arises from the interference of parent particles
with different polarizations, so it is 6= 0 just if the parent parton is a gluon.

I If the parent is a quark, helicity conservation implies no contribution from different
helicity configurations.

I Normally the term in Q is ignored in a Monte Carlo simulation, but one has to keep
in mind they are there (they will play a role in MC@NLO).
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Angular ordering
(slide by M. Mangano)

11

!2

2

!1

!
2

"(!#!1)

"(!#!2)

2

= +

Angular ordering

+

Radiation inside the cones is allowed, and described by the eikonal probability, radiation 
outside the cones is suppressed and averages to 0 when integrated over the full azimuth 
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Angular ordering
(slide by M. Mangano)

An intuitive explanation of angular ordering

φ

θμ!
k

p

Distance between q and qbar after τ:

d =  φτ = (φ/θ) 1/k⊥

If the transverse wavelength of the emitted gluon is longer than 
the separation between q and qbar, the gluon emission is 
suppressed, because the q qbar system will appear as colour 
neutral (=> dipole-like emission, suppressed)

μ! = (p+k)! = 2E k₀ (1-cosθ) 
∼ E k₀ θ! ∼ E k⊥ θ

Lifetime of the virtual intermediate state:

τ < γ/μ = E/μ!  = 1 / (k₀θ!)= 1/(k⊥θ)

Therefore d> 1/k⊥ , which implies θ < φ
12
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Angular ordering in a shower

I In the soft limit, gluon emission is ordered in angle: a
gluon emitted at an angle larger than the previous
cannot resolve the color charge of the dipole which
has emitted it.

I In terms of the evolution variable ζ = 1− cos θ (θ = branching angle), the soft limit
of the cross section (after azimuthal integration) becomes

|Mn+1|2dΦn+1 ' |Mn|2dΦn
dζ

ζ

dz

z

αS

2π
(−2C).

I Improved by replacing 1
z
→ Pa→bc(z) to get the correct collinear non-soft limit.

I The fact that one can emit only on a given cone is a genuine quantum interference
effect: so it is not true that all interferences are neglected in a parton shower
algorithm. An angular ordered algorithm include a certain class of interference
effects.
This is a very convenient way of including a quantum effect in a classical language
(it is still a Markov chain).
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Angular ordering in a shower

|Mn+1|2dΦn+1 ' |Mn|2dΦn
dζ

ζ
dz P(z)

αS

2π
(−2C).

I Since some interference effects are there, one should expect the presence of
subdominant contributions to the extra emission cross section (recall the picture of
the first slides).

I Indeed it can be shown that the angular ordered algorithm correctly reproduces the
leading and next-to leading collinear logarithms in the soft limit.

I To summarize.
Ordinary approach = leading collinear logarithm ∀z , so leading collinear logarithm
also in the soft limit.
Angular ordered approach (improved by the inclusion of the Altarelli-Parisi) =
leading collinear logarithm ∀ non-soft z ; in the soft limit it is leading + next to
leading collinear logarithm.
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Initial state radiation

Up to now we have explicitly dealt with final state radiation: what about initial state
radiation?

I For final state radiation one starts from the hard subprocess and evolves forward in
time, towards the final state particles.

I If one had to evolve forward in time also for initial state radiation, this would very
rarely lead to the wanted hard process kinematical configuration: tremendous
inefficiency.

I Backwards evolution: start from the hard subprocess even for initial state radiation,
and evolve back to the incoming colliding hadrons.

I Use the so called DGLAP equation to determine the parton evolution backwards in
time.
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DGLAP equation

Establish the scale dependence of a parton distribution function.Evolution equations

From: 2006 CERN lectures on QCD by Brian Webber

I Sequence of branchings as a path in the
(t, z) plane (warning: z is called x in
the plot). Each branching is a step
downwards in z at a scale t.

I Change in the parton density fb(z , t)
when t is increased from t to t + dt is
the number of pahs entering the small
square dt dz minus the number of
paths going out, divided by dz .
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DGLAP equation

I Number of paths going in (or better: probability that a path goes in) = probability
to have a parent particle a at scale t and fraction z ′ > z , times the probability for it
to branch to b in the interval between t and t + dt, summed over all possible
starting values z ′:

df
(IN)
b (z , t) =

dt

t

∑
ac

∫ 1

z

dz ′
∫ 1

0

dw
αS

2π
fa(z ′, t)Pa→bc(w)δ(z − wz ′)

=
dt

t

∑
ac

∫ 1

0

dw

w

αS

2π
fa
( z

w
, t
)
Pa→bc(w).

I Number of paths going out (or better: probability that a path goes out) =
probability to have a parton a at scale t and fraction z , times the probability for it to
branch to b, summed over all the possible arriving values z ′ < z :

df
(OUT )
b (z , t) =

∑
ac

dt

t
fa(z , t)

∫ z

0

dz ′
∫ 1

0

dw
αS

2π
Pa→bc(w)δ(z ′ − wz)

=
dt

t

∑
ac

fa(z , t)

∫ 1

0

dw
αS

2π
Pa→bc(w).
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DGLAP equation

Infinitesimal change in fb(z , t):

dfb(z , t) = df
(IN)
b (z , t)− df

(OUT )
b (z , t)

=
dt

t

∑
ac

∫ 1

0

dw
αS

2π
Pa→bc(w)

[
1

w
fa
( z

w
, t
)
− fa(z , t)

]
=

dt

t

∑
ac

∫ 1

0

dw

w

αS

2π
[Pa→bc(w)]+ fa

( z

w
, t
)
,

where the ”+” prescription is defined as usual as∫ 1

0

dx [g(x)]+f (x) ≡
∫ 1

0

dx g(x)[f (x)− f (1)].
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Initial state radiation

Infintesimal change in fb(z , t):

dfb(z , t) =
dt

t

∑
ac

∫ 1

0

dw

w

αS

2π
[Pa→bc(w)]+ fa

( z

w
, t
)
.

Differential emission probability in backwards evolution = infinitesimal change in fb(z , t)
normalized to fb(z , t):

dp̂(t) =
dfb(z , t)

fb(z , t)
=
∑
ac

dt

t

∫
dw

w

αS

2π
Pa→bc(w)

fa(z/w , t)

fb(z , t)
,

as opposed to the final state radiation probability (averaged over azimuth)

dp(t) =
∑
bc

dt

t

∫
dz
αS

2π
Pa→bc(z).

Thus, the Sudakov form factor for initial state radiation is

∆̂(Q2, t) = exp

[
−
∫ Q2

t

dp̂(t′)

]
.
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Initial state radiation: comments

Differential emission probability in backwards evolution:

dp̂(t) =
dfb(z , t)

fb(z , t)
=
∑
ac

dt

t

∫
dw

w

αS

2π
Pa→bc(w)

fa(z/w , t)

fb(z , t)
.

I Directly proportional to fa: the more the partons a in the hadron, the easier to
create a parton b out of one of them (given that a is allowed to split to b).

I Inversely proportional to fb: the more partons b have already been produced, the less
probable to produce new ones.

I The presence of fa ensures that the parton composition of the hadron is correctly
reflected in the branching sequence.
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Argument for the coupling constant

Each choice of argument for αS is equally acceptable at the leading-logarithmic accuracy.
However, there is a choice that allows one to resum certain classes of subleading
logarithms.

I Consider the one loop running coupling (for definiteness: t= virtuality here):

αS(t) =
αS(µ2)

1 + αS(µ2)b log t
µ2

∼ αS(µ2)

(
1− αS(µ2)b log

t

µ2

)
.

I It can be shown that higher order corrections in the DGLAP equation imply the
Altarelli-Parisi kernels to be modified to Pa→bc(z)→ Pa→bc(z) + αSP

′
a→bc(z).

I P ′a→bc(z) diverges as −b log z(1− z)Pa→bc(z) for g → gg in the soft gluon limit
(just z or 1− z if a quark is there).

I Thus, one can simply take into account these higher order corrections by choosing
z(1− z)t ∼ p2

⊥ as argument of the coupling. Indeed, the kernel αSPa→bc(z) becomes

αS[z(1− z)t]Pa→bc(z) ∼ αS(t) (1− αS(t)b log z(1− z))Pa→bc(z)

= αS(t)
(
Pa→bc(z) + αS(t)P ′a→bc

)
.
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Implementation

I Extract the evolution variable t of the branching
by solving the equation ∆(Q2, t) = R#, with R#

a flat random number between 0 and 1.
This correctly reproduces the probability
distribution since the probability of extracting a
splitting scale t between t1 and t2 is
∆(Q2, t2)−∆(Q2, t1).

1

t Q2Q2
0

∆a(Q2, t)

R#

Wednesday, November 30, 2011

0

R1(z)

R2(z)

1

1

z

Friday, December 2, 2011

I Extract the energy sharing z and the daughter
identities b and c according to Pa→bc(z).
For two possible branchings P1(z) and P2(z) one
can call Ri (z) = Pi (z)/(P1(z) + P2(z)), and
choose z and parton identities by extracting a
random point in the plane.

I Extract φ (flat).

I Reiterate (updating the maximum scale for the Sudakov) until all the ’external’
partons are characterized by a scale smaller than a threshold Q2

0 ∼ 1 GeV.

I Put partons on shell and hadronize.
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Hadronization

I The pure shower stops when all ”external” partons are characterized by a scale
below a certain infrared cut-off Q0 ∼ 1GeV, and at that moment they are put on
their mass-shell.

I But what one physically observes in a detector are colorless hadrons.

I Need to formulate a model for passing from partons to hadrons: this is a delicate
part since there is not a strong theoretical understanding of the phenomenon.

I However the formulation of such models can be guided by some physical and
phenomenological considerations.
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Color preconfinement and cluster formation

Color is left behind by the quark during its evolution thus color partners are close in
phase space (strongly suppressed long-distance correlation: color ”preconfinement”). The
most so for an angular-ordered shower. Formation of small-mass colorless clusters to be
decayed into physical hadrons.

e-   A+e-   A+e-   A+ e-   A+e-A+

a

i

j

Colour is left “behind” by the struck 
quark. The first soft gluon emitted at 
large angle will connect to the beam 
fragments, ensuring that the beam 
fragments can recombine to form 
hadrons, and will allow the struck 
quark to evolve without having to 
worry about what happens to the 
proton fragments.

p

The structure of the perturbative 
evolution leads naturally to the clustering 
in phase-space of colour-singlet parton 
pairs (”preconfinement”). Long-range 
correlations are strongly suppressed. 
Hadronization will only act locally, on low-
mass colour-singlet clusters. 
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Quark antiquark color potential and string model

From lattice QCD one sees that the color confinement potential of a quark-antiquark
grows linearly with their distance: V (r) ∼ kr , with k ∼ 0.2 GeV2. This is modeled with a
string with uniform tension (energy per unit length) k that gets stretched between the qq̄
pair.
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At a certain point it becomes energetically favorable to break the string in two by
creating a new qq̄ pair in the middle of the string.
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Main Monte Carlos available on the market: HERWIG

All HERWIG versions (Fortran and C++) implement the angular-ordering: subsequent
emissions are characterized by smaller and smaller angles.

I HERWIG 6: t = pb·pc
EbEc

' 1− cos θ.

I Herwig++: t = (pb⊥)2

z2(1−z)2 = t(θ).

Implementing angular ordering, the parton shower (without matrix element corrections)
cannot populate the full phase space (without matrix element corrections): empty regions
of the phase space, called ”dead zones”, will arise.

Note. It may seem that the presence of dead zones is a weakness, but it is not so: they
implement correctly the collinear approximation, in the sense that they constrain the
shower to live uniquely in the region where it is reliable.

I Hadronization: cluster model.
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Main Monte Carlos available on the market: PYTHIA

Choice of evolution variables for Fortran and C++ versions:

I PYTHIA 6: t = (pb + pc)2 ∼ z(1− z)θ2E 2
a .

I Pythia 8: t = (pb)2
⊥.

Simpler variables, but decreasing angles not guaranteed: PYTHIA has to reject the
events that don’t respect the angular ordering (though this is not completely equivalent
to ordering in angle).

Not implementing directly angular ordering, the phase space can be filled entirely, even
without matrix element corrections, so one can have the so called ”power shower” (use
with a certain care).

I Hadronization: string model.

Note. Usually PYTHIA is faster than HERWIG.
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Main Monte Carlos available on the market: SHERPA

I A new and completely different kind of shower not based on the collinear 1→ 2
branching, but on more complex 2→ 3 elementary process: emission of the
daughter off a color dipole.

I The real emission matrix element squared is decomposed into a sum of terms Dij,k

(dipoles) that capture the soft and collinear singularities in the limits i collinear to j ,
i soft (k is the spectator), and a factorization formula is deduced in the leading color
approximation:

Dij,k → B
αS

pi · pj
Kij,k .

I The shower is developed from a Sudakov form factor

∆ = exp

(
−
∫

dt

t

∫
dz αS Kij,k

)
.

I It treats correctly the soft gluon emission off a color dipole, so angular ordering is
built in.

I Hadronization: cluster model.
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Beyond the collinear approximation in the shower

Fabio MaltoniThikTank on Physics@LHC, 05-09 Dec 2011 

Goal for ME-PS merging/matching

2nd QCD radiation jet in 
top pair production at 

the LHC

• Regularization of matrix element divergence

• Correction of the parton shower for large momenta

• Smooth jet distributions

Matrix element

Parton shower

Desired curve

31
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Matrix element corrections

I Pure parton shower approach developed near the boundaries of the phase space,
where the cross section is singular: far from there the parton shower is not trustable.
Try and include real matrix element information to better describe the tails.

PYTHIA: Matrix element reweighting.

I For many simple processes, the real emission matrix element (dσ1
ME ) is smaller than

the corresponding first-emission parton shower prediction (dσ1
MC ).

I The phase space allowed for the shower is maximally extended and the first parton
shower emissions are rejected with ratio dσ1

ME/dσ
1
MC , which ensures a correct

hard-emission spectrum.

HERWIG.

I The allowed region for the parton shower is kept limited, but in the dead zones is
generated radiation according to the correct first emission matrix element
distribution.
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Matching at the NLO
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Why matching at the NLO

I We have seen that the pure parton shower approach captures the most singular
behavior of the cross section near the boundaries of the phase space and far from
there it is not reliable.

I Matrix element corrections partially remedy this inefficiency, but are just an
improved leading order matching: in particular they completely miss the information
on the finite piece of the virtual corrections.
Also: not available for arbitrary processes.

I Nevertheless, the parton shower is an excellent approach to collider physics, since
they provide, even if approximately, a realistic simulation of the real collision events,
taking into account interactions beyond fixed-order, hadronization phase, multiple
interactions, distributions of partons into the protons, pile-up effects, ...

I Conversely, a next to leading order Feynman diagram computation is a ”theoretical
exercise” (no ideas about non-perturbative effects), but well predicts observables in
the part of the phase space far from the singular boundaries.
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Why matching at the NLO

I NLO and parton showers are thus complementary approaches, the former good for
hard emissions, the latter for soft / collinear ones.

I A good strategy is to formulate a method able to retain the virtues of the two while
discarding their weaknesses: give a prediction which comes from the pure parton
shower where the resummation of large logarithms is needed (soft and collinear
region), and coincides with the NLO for hard radiation.

Special attention to be put on

I Avoiding double counting: there must be a way to assign a kinematics either to the
shower part or to the NLO part.

I Achieving a smooth transition between the two different régimes.

I Attaining full NLO precision.
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MC@NLO

Paolo Torrielli (EPFL) Interfacing NLO with Parton Showers ThinkTank on Physics @ LHC 47 / 83



Naive matching at the NLO

Consider leading order ( = Born: suppose n-bodies), next to leading order, and parton
shower differential cross sections:

dσLO = dΦB B,

dσNLO = dΦB

(
B + V + dΦ(+1) R

)
,

dσMC = dΦBB I
(n)
MC (O)dO.

I B and V have Born-like kinematics (n-bodies), while R has real-like kinematics
(n + 1-bodies). V and R have implicitly one power of αS more than B.

I I
(k)
MC (O): parton shower spectrum for observable O, showering from a k−body initial

condition (for example, a Les Houches file with events with k particles each).

Remember slide 22:
∫
dΦBB is what we had called σn, so that it easy to recognize

I
(n)
MC (O)dO in the case of 0 or 1 emission to be

I
(n)
MC (O)dO = ∆(Q2,Q2

0 ) + ∆(Q2,Q2
0 )
∑
bc

dz
dt

t

dφ

2π

αS

2π
Pa→bc(z).

Note. In the following, when talking about Monte Carlo’s, it is understood the absence of
matrix element corrections.
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Naive matching at the NLO

Naive matching definition

dσ”MC@NLO”

dO
= [dΦB(B + V )] I

(n)
MC (O) +

[
dΦBdΦ(+1) R

]
I

(n+1)
MC (O).

This simple approach does NOT work:

I Instability: weights associated to I
(n)
MC (O) and I

(n+1)
MC (O) are separately divergent.

Remember from the KLN theorem that only the sum of V and
∫
dΦ(+1)R is finite,

so it is hopeless to treat n- body and n + 1-body configurations separately.
One could regulate the divergence by means of some cut-off but then

I one should prove the independence upon this cutoff,
I the unweighting of real-like configurations would be highly inefficient (hard to extract

events from a singular function).

I Double counting: this dσ”MC@NLO”, expanded at the NLO does not coincide with the
NLO differential rate.
One must indeed avoid overcounting the exact virtual with the approximated
contribution from the Sudakov, otherwise some Born-like configurations, to be
passed to the shower are spurious (not there in the exact NLO computation). Some
configurations are thus accounted for by both the parton shower and the NLO.
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Modified subtraction
Modify the naive formula:

dσMC@NLO

dO
=

[
dΦB(B + V +

∫
dΦ(+1)MC)

]
I

(n)
MC (O) +

[
dΦBdΦ(+1) (R−MC)

]
I

(n+1)
MC (O),

as opposed to the naive

dσ”MC@NLO”

dO
= [dΦB(B + V )] I

(n)
MC (O) +

[
dΦBdΦ(+1) R

]
I

(n+1)
MC (O).

The term MC is called the Monte Carlo counterterm, and its rough structure is

MC =

∣∣∣∣∂(tMC, zMC, φ)

∂Φ(+1)

∣∣∣∣ 1

tMC

αS

2π

1

2π
P(zMC)B.

I It is the cross section for the first emission in the parton shower: it is the Born
matrix-element squared times the differential emission probability in a given point of
the extra-parton phase space.

I It has the same collinear and soft singularities as the real and virtual emission
amplitudes squared, so it acts as a local counterterm for them (subtlety on soft
poles, see below).

I It is basically process independent.

I It essentially depends on the Monte Carlo one is interfacing to.
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Properties

Good features of the modified subtraction with respect to the naive one (to be shown
explicitly in the next slides):

I Stability: weights associated to different multiplicities (i.e. to I
(n+1)
MC (O) and

I
(n+1)
MC (O)) are now separately finite, because the Monte Carlo counterterm has the

same collinear and soft poles as the real and virtual emission amplitude squared.
Unweughting possible!

I Double counting avoided: the rate dσMC@NLO, expanded at the NLO, coincides with
the total NLO cross section.

I Smooth matching: spectra coming form MC@NLO coincide in shape with the pure
parton shower in the soft / collinear region (where the shower is actually reliable),
and coincide both in shape and in normalization with the pure NLO for hard
emission.

I Normalization: the MC@NLO cross section is naturally normalized to the total NLO
cross section.
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Properties
Avoiding of double counting:

dσMC@NLO

dO
=

[
dΦB(B + V +

∫
dΦ(+1)MC)

]
I

(n)
MC (O) +

[
dΦBdΦ(+1) (R−MC)

]
I

(n+1)
MC (O)

where, recalling slides 48 and 50, and using a simple notation for the Sudakov form factor
∆, we have

I
(k)
MC (O)dO = ∆ + ∆ dΦ(+1)

MC

B
+ ... ,

∆ = exp

(
−
∫

dΦ(+1)
MC

B

)
.

Expand at the NLO (recall that MC , R and V have one αS more than B):

I
(k)
MC (O)dO = 1−

∫
dΦ(+1)

MC

B
+ dΦ(+1)

MC

B
+ ...

dσMC@NLO =

[
dΦB(B + V +

∫
dΦ(+1)MC)

] [
1−

∫
dΦ(+1)

MC

B
+ dΦ(+1)

MC

B
+ ...

]
+

[
dΦBdΦ(+1) (R−MC)

]
[1 + ...]

= dΦB(B + V + dΦ(+1) R) = dσNLO
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Properties

dσMC@NLO

dO
=

[
dΦB(B + V +

∫
dΦ(+1)MC)

]
I

(n)
MC (O) +

[
dΦBdΦ(+1) (R−MC)

]
I

(n+1)
MC (O)

Smooth matching:
I In the soft / collinear region R −MC ∼ 0 and one gets

dσMC@NLO ∝ I
(n)
MC (O)dO.

The shape of the spectrum is identical to the underlying Monte Carlo, while the
normalization in that region takes into account real and virtual emission, at variance
with the pure parton shower. This is a way to include all the aspects of an NLO
computation consistently in a parton shower.

I In the hard region, pure shower effects are suppressed (recall that matrix element
corrections are excluded, so the maximum scale imposed on the shower implies MC
to be zero far from the singular boundaries): MC ∼ 0, I

(n)
MC (O)dO ∼ 1, B = V = 0,

and then
dσMC@NLO ∼ dΦBdΦ(+1) R.

Normalization:
I Based on the unitarity property of the parton shower∫

I
(k)
MC (O)dO = 1 =⇒

∫
dσMC@NLO =

∫
dσNLO.
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Subtleties: G-function and FKS subtraction

I The Monte Carlo counterterm is the collinear limit of the real matrix element
squared, but what about soft poles?

I One includes the soft poles by modifying MC → MCG + (1− G)R, where G is a
function that is 0 in the soft limit and goes smoothly to 1 immediately outside the
limit.
One can show that this replacements does not spoil the properties of the matching.
No dependence on the choice of G function has ever shown.

I It is too complicated to integrate analytically
∫
dΦ(+1)MC , so one cannot get the

1/ε2 and 1/ε poles to cancel the ones from V , even if the sum is effectively finite.

I Need for a subtraction method that analytically cancels the poles: FKS subtraction.
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Implementation

dσMC@NLO

dO
=

[
dΦB(B + V +

∫
dΦ(+1)MC)

]
I

(n)
MC (O) +

[
dΦBdΦ(+1) (R−MC)

]
I

(n+1)
MC (O)

Integrands associated with n- and n + 1- parton multiplicities are called S (for ”standard
Monte Carlo”) and H (for ”hard”).

They can be negative somewhere: MC@NLO is not positive definite (more on this later).

I Compute the integrals of S- and H- integrands (IS, and IH) and the integrals of the
absolute values of S- and H-integrands (JS and JH).

I Generate S- or H- kinematical configurations (events) distributed according to JS
and JH (probability distributions are positive definite), but assign them a weight with
sign ± depending on the sign of the S- and H- integrand in that particular
configuration (unweighting up to a sign).
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Negative weights

I Calling PS/H and NS/H the absolute values of the
areas of the positive and negative regions, then

IS/H = PS/H − NS/H,

JS/H = PS/H + NS/H,

and the fraction of negative weights is

fS/H =
NS/H

PS/H + NS/H
=

1

2

(
1− IS/H

JS/H

)
.

PS/H

NS/H

Friday, December 2, 2011

I The fraction of negative weights is expected to be reasonably small, since the Born
piece is positive-definite and perturbatively dominant.

But, basic question: is it a conceptual problem to have negative weights?

I No: after showering, MC@NLO distributions are positive definite (for sufficiently
high statistics) and physical: this can be easily understood because MC@NLO
interpolates smoothly between two positive-definite contributions.

I Fraction of negative weights just affects the ”efficiency”, i.e. the number total
events needed to get smooth histograms (the less the negative weights the smoother
the spectrum).
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MC@NLO: old limitations

Lack of a systematic approach:

I One code per process / simple processes only.

I Necessary slowness in including new processes.

I Necessary slowness in adding a new PSMC.

HERWIG 6, Herwig++: O(30) processes. PYTHIA 6: 2 processes.

IPROC IV IL1 IL2 Spin Process

–1350–IL ! H1H2 → (Z/γ∗ →)lIL l̄IL + X

–1360–IL ! H1H2 → (Z →)lIL l̄IL + X

–1370–IL ! H1H2 → (γ∗ →)lIL l̄IL + X

–1460–IL ! H1H2 → (W+ →)l+ILνIL + X

–1470–IL ! H1H2 → (W − →)l−ILν̄IL + X

–1396 × H1H2 → γ∗(→ ∑
i fif̄i) + X

–1397 × H1H2 → Z0 + X

–1497 × H1H2 → W+ + X

–1498 × H1H2 → W − + X

–1600–ID H1H2 → H0 + X

–1705 H1H2 → bb̄ + X

–1706 7 7 × H1H2 → tt̄ + X

–2000–IC 7 × H1H2 → t/t̄ + X

–2001–IC 7 × H1H2 → t̄ + X

–2004–IC 7 × H1H2 → t + X

–2030 7 7 × H1H2 → tW −/t̄W+ + X

–2031 7 7 × H1H2 → t̄W+ + X

–2034 7 7 × H1H2 → tW − + X

–2040 7 7 × H1H2 → tH−/t̄H+ + X

–2041 7 7 × H1H2 → t̄H+ + X

–2044 7 7 × H1H2 → tH− + X

–2600–ID 1 7 × H1H2 → H0W+ + X

–2600–ID 1 i ! H1H2 → H0(W+ →)l+i νi + X

–2600–ID -1 7 × H1H2 → H0W − + X

–2600–ID -1 i ! H1H2 → H0(W − →)l−i ν̄i + X

–2700–ID 0 7 × H1H2 → H0Z + X

–2700–ID 0 i ! H1H2 → H0(Z →)li l̄i + X

–2850 7 7 × H1H2 → W+W − + X

–2860 7 7 × H1H2 → Z0Z0 + X

–2870 7 7 × H1H2 → W+Z0 + X

–2880 7 7 × H1H2 → W −Z0 + X

Table 1: Some of the processes implemented in MC@NLO 4.0 (see also table 2). H1,2 represent

nucleons or antinucleons. IPROC–10000 generates the same processes as IPROC, but eliminates

the underlying event. A void entry indicates that the corresponding variable is unused. The ‘Spin’

column indicates whether spin correlations in vector boson or top decays are included (!), neglected

(×) or absent (void entry); when included, spin correlations are obtained by direct integration of

the relevant NLO matrix elements. Spin correlations in Higgs decays to vector boson pairs (e.g.

H0 → W+W− → l+νl−ν̄) are included in HW6 versions 6.520 and higher. Processes −1705 and

−2040−IC are not available for HW++ at present.
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IPROC IV IL1 IL2 Spin Process

–1706 i j ! H1H2 → (t →)bkfif
′
i(t̄ →)b̄lfjf

′
j + X

–2000–IC i ! H1H2 → (t →)bkfif
′
i/(t̄ →)b̄kfif

′
i + X

–2001–IC i ! H1H2 → (t̄ →)b̄kfif
′
i + X

–2004–IC i ! H1H2 → (t →)bkfif
′
i + X

–2030 i j ! H1H2 → (t →)bkfif
′
i(W

− →)fjf
′
j/

(t̄ →)b̄kfif
′
i(W

+ →)fjf
′
j + X

–2031 i j ! H1H2 → (t̄ →)b̄kfif
′
i(W

+ →)fjf
′
j + X

–2034 i j ! H1H2 → (t →)bkfif
′
i(W

− →)fjf
′
j + X

–2040 i ! H1H2 → (t →)bkfif
′
iH

−/

(t̄ →)b̄kfif
′
iH

+ + X

–2041 i ! H1H2 → (t̄ →)b̄kfif
′
iH

+ + X

–2044 i ! H1H2 → (t →)bkfif
′
iH

− + X

–2850 i j ! H1H2 → (W+ →)l+i νi(W
− →)l−j ν̄j + X

–2870 i j ! H1H2 → (W+ →)l+i νi(Z
0 →)l′j l̄

′
j + X

–2880 i j ! H1H2 → (W+ →)l−i ν̄i(Z
0 →)l′j l̄

′
j + X

Table 2: Some of the processes implemented in MC@NLO 4.0 (see also table 1). H1,2 represent

nucleons or antinucleons. For more details on Wt and H±t production, see sect. 4.4. Spin correla-

tions for the processes in this table are implemented according to the method presented in ref. [29].

bα (b̄α) can either denote a b (anti)quark or a generic down-type (anti)quark. fα and f ′
α can denote

a (anti)lepton or an (anti)quark. See sects. 4.3 and 4.6 for fuller details. Process −2040−IC is not

available for HW++ at present.

a more limited physics content; for this reason, they have not been interfaced to HW++.

There are a number of other differences between the lepton pair and single vector boson

processes. The latter do not feature the γ–Z interference terms. Also, their cross sections

are fully inclusive in the final-state fermions resulting from γ∗, Z or W ±. The user can still

select a definite decay mode using the HW6 variable MODBOS (see sect. 4.6), but the relevant

branching ratio will not be included by MC@NLO. As stated previously, these processes

are not available for running with HW++.

In NLO computations for single-top production in the SM, it is customary to distin-

guish between three production mechanisms, conventionally denoted as the s channel, t

channel, and Wt mode. Starting from version 3.4, all three mechanisms are implemented in

MC@NLO; s- and t-channel single top production correspond to setting IC=10 and IC=20

respectively. For example, according to tables 1 and 2, t-channel single-t̄ events will be

generated by entering IPROC=−2021. These two channels can also be simulated simulta-

neously (by setting IC=0). We point out that the Wt cross section is ill-defined beyond

the leading order in QCD, which is also the case for H±t production when mH < mt. See

sect. 4.4 for more details.

In the case of vector boson pair production, the process codes are the negative of those

adopted in MC@NLO 1.0 (for which the Les Houches interface was not yet available),

rather than those of standard HW6.
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IPROC IV IL1 IL2 Spin Process

–1350–IL ! H1H2 → (Z/γ∗ →)lIL l̄IL + X

–1360–IL ! H1H2 → (Z →)lIL l̄IL + X

–1370–IL ! H1H2 → (γ∗ →)lIL l̄IL + X

–1460–IL ! H1H2 → (W+ →)l+ILνIL + X

–1470–IL ! H1H2 → (W − →)l−ILν̄IL + X

–1396 × H1H2 → γ∗(→ ∑
i fif̄i) + X

–1397 × H1H2 → Z0 + X

–1497 × H1H2 → W+ + X

–1498 × H1H2 → W − + X

–1600–ID H1H2 → H0 + X

–1705 H1H2 → bb̄ + X

–1706 7 7 × H1H2 → tt̄ + X

–2000–IC 7 × H1H2 → t/t̄ + X

–2001–IC 7 × H1H2 → t̄ + X

–2004–IC 7 × H1H2 → t + X

–2030 7 7 × H1H2 → tW −/t̄W+ + X

–2031 7 7 × H1H2 → t̄W+ + X

–2034 7 7 × H1H2 → tW − + X

–2040 7 7 × H1H2 → tH−/t̄H+ + X

–2041 7 7 × H1H2 → t̄H+ + X

–2044 7 7 × H1H2 → tH− + X

–2600–ID 1 7 × H1H2 → H0W+ + X

–2600–ID 1 i ! H1H2 → H0(W+ →)l+i νi + X

–2600–ID -1 7 × H1H2 → H0W − + X

–2600–ID -1 i ! H1H2 → H0(W − →)l−i ν̄i + X

–2700–ID 0 7 × H1H2 → H0Z + X

–2700–ID 0 i ! H1H2 → H0(Z →)li l̄i + X

–2850 7 7 × H1H2 → W+W − + X

–2860 7 7 × H1H2 → Z0Z0 + X

–2870 7 7 × H1H2 → W+Z0 + X

–2880 7 7 × H1H2 → W −Z0 + X

Table 1: Some of the processes implemented in MC@NLO 4.0 (see also table 2). H1,2 represent

nucleons or antinucleons. IPROC–10000 generates the same processes as IPROC, but eliminates

the underlying event. A void entry indicates that the corresponding variable is unused. The ‘Spin’

column indicates whether spin correlations in vector boson or top decays are included (!), neglected

(×) or absent (void entry); when included, spin correlations are obtained by direct integration of

the relevant NLO matrix elements. Spin correlations in Higgs decays to vector boson pairs (e.g.

H0 → W+W− → l+νl−ν̄) are included in HW6 versions 6.520 and higher. Processes −1705 and

−2040−IC are not available for HW++ at present.
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POWHEG
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Naive definition

Recall the Monte Carlo cross section for up to 1 emission, in the simplified notation of
slide 52:

dσ = dΦBB

[
∆ + ∆ dΦ(+1)

MC

B

]
.

Try first to attain NLO precision by replacing the Born contribution with the NLO cross
section integrated in the extra parton phase space:

dσ”POWHEG” = dΦB

[
B + V +

∫
dΦ(+1)R

] [
∆ + ∆ dΦ(+1)

MC

B

]
.

This naive definition does not work, since if one expands it at the NLO, it does not
coincide with the differential NLO cross section (double counting). The integral implicit
in the Sudakov form factor definition does not contain any R term to cancel the one in
the first parenthesis, and the piece in dΦ(+1) is not R/B.
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Modified Sudakov form factor

The previous considerations suggest that in order to avoid double counting, one should
replace the definition of the Sudakov form factor with the following:

∆̃(Q2,Q2
0 ) = exp

[
−
∫ Q2

Q2
0

dΦ(+1)
R

B

]
,

corresponding to a modified differential branching probability dp̃ = dΦ(+1)R/B.
It is thus tempting to define the POWHEG cross section as

dσ”POWHEG” = dΦB

[
B + V +

∫
dΦ(+1)R

] [
∆̃(Q2,Q2

0 ) + ∆̃(Q2,Q2
0 ) dΦ(+1)

R

B

]
.

This time the double counting is avoided, but the integral of the cross section is different
from the total NLO, since the second parenthesis does not integrate to 1. The above
formula has thus to be modified to

dσPOWHEG = dΦB

[
B + V +

∫
dΦ(+1)R

] [
∆̃(Q2,Q2

0 ) + ∆̃(Q2, t) dΦ(+1)
R

B

]
,

where t is the scale at which the branching probability R/B in the second parenthesis is
evaluated.
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Properties

dσPOWHEG = dΦB

[
B + V +

∫
dΦ(+1)R

] [
∆̃(Q2,Q2

0 ) + ∆̃(Q2, t) dΦ(+1)
R

B

]
.

I The second piece in the second parenthesis is d∆̃(Q2, t), so its integral over the
extra parton phase space (here between scales Q2

0 and Q2) is
∆̃(Q2,Q2)− ∆̃(Q2,Q2

0 ) = 1− ∆̃(Q2,Q2
0 ), so the parenthesis integrates to 1 (this

can also be understood as unitarity of the shower below scale t).
So the POWHEG cross section is normalized at the NLO.

I Expand at the first-emission level:

dσPOWHEG = dΦB

[
B + V +

∫
dΦ(+1)R

] [
1−

∫
dΦ(+1)

R

B
+ dΦ(+1)

R

B

]
= dσNLO,

so double counting is avoided.

I Its structure is identical an ordinary shower, with just normalization rescaled by a
global k- factor and a different Sudakov: no negative weights are involved.

The first two items are defining properties of both MC@NLO and POWHEG, and indeed
show how they are formally equivalent at the NLO level. Nevertheless, there are many
practical differences between the two.
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MC@NLO vs POWHEG

I ↑MC@NLO, ↓POWHEG: MC@NLO does not exponentiate of the non-singular part
of the real emission amplitude.

I ↑MC@NLO, ↓POWHEG: MC@NLO does not require tricks for treating Born zeros
(MC ∝ B).

I ↑POWHEG, ↓MC@NLO: POWHEG is independent from the parton shower one is
interfacing the computation to.

I ↑POWHEG, ↓MC@NLO: POWHEG has not negative weights. A slightly smaller
statistics is required to POWHEG than to MC@NLO in order to get equally smooth
plots.

Many complicated processes implemented in POWHEG (for example: Wbb̄, WW , Wj ,
di-jets, ...), but not fully automatic: the implementation of new processes requires some
dedicated code.

What about MC@NLO?
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State of the art, automatic NLO+PS matching:
aMC@NLO
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From MC@NLO to aMC@NLO

I MC@NLO framework solid and mature.

I Limitations only in the lack of a systematic implementation, not in the method.

Then: build a framework that automates the computation of all the steps needed for the
matching at the NLO, and also makes it easy the inclusion of a new parton shower.

I MadGraph / MadFKS: Born contribution, poles subtraction and finite part of the
Real.

I MadLoop: finite part of the Virtual.

I Compute automatically MC counterterms.

I Brand new: compute automatically scale and PDF uncertainties without rerunning
the code!
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aMC@NLO: detailed structure of the MC counterterm

MC =
∑

pq,c,l∈c

δp∈l
Np

αS

(2π)2

∣∣∣∣∣∂(t
(l)
p , z

(l)
p , φ)

∂Φ(+1)

∣∣∣∣∣Θ(DZ)dΦB
Pp→qr (z

(l)
p )|Mc |2B + Qp→qr (z

(l)
p )|M̃c |2

t
(l)
p

I c, l = color flow / color line: shower variables and scales may depend on it.

I |Mc |2B ≡ B|Mc |2B/
∑

c′ |Mc′ |2B = ’barred’ Born amplitude squared, to recover the
full Born summing only on leading coulor.

I Qp→qr (z
(l)
p ) = azimuthal kernel.

I |M̃c |2 = ’barred’ azimuthal amplitude squared.

I Θ(DZ) = dead zone (built-in for HERWIG, imposed to PYTHIA).

Steps performed in a fully automatic and process-independent way:

I Assignment of color flow and color partner.

I Assignment of the splitting type (initial state radiation form leg 1 or 2, final state
radiation from massive or massless leg).

I Shower variables definitions and computation of the jacobian.

I Computation of barred amplitudes and Altarelli-Parisi kernels.
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aMC@NLO: checks and validation

Process-independent checks:

I Infrared limits of the Monte Carlo counterterm have to coincide with the ones of the
real emission contribution: integrals S and H have to be separately finite.

I The total cross section has to be the NLO one.

Validation:

I Fixed process and parameters, all spectra have to coincide with MC@NLO.
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New results
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new results with aMC@NLO

Recently published results (all this year) using the aMC@NLO code:

(pseudo-)scalar Higgs production in association with a top-antitop pair
[RF, Frixione, Hirschi, Maltoni, Pittau & Torrielli, arXiv:1104.5613]

Vector boson production in association with a bottom-antibottom pair
[RF, Frixione, Hirschi, Maltoni, Pittau & Torrielli, arXiv:1106.6019]

Four charged lepton production at hadron colliders
[RF, Frixione, Hirschi, Maltoni, Pittau & Torrielli, arXiv:1110.4738]

Wjj at the Tevatron
[RF, Frixione, Hirschi, Maltoni, Pittau & Torrielli, arXiv:1110.5502]

118
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Four-lepton production

4-lepton invariant mass is almost insensitive to parton shower effects. 
4-lepton transverse moment is extremely sensitive

Including scale uncertainties
119

Figure 1: Four-lepton invariant mass (left panel) and transverse momentum (right panel), as pre-

dicted by aMC@NLO(solid black), aMC@LO(solid blue), and at the (parton-level) NLO (dashed

red) and LO (dashed magenta). The middle insets show the aMC@NLO scale (dashed red) and

PDF (black solid) fractional uncertainties, and the lower insets the ratio of the two leptonic channels,

eq. (3.5). See the text for details.

These have very different behaviours w.r.t. the extra radiation provided by the parton

shower, with the former being (almost) completely insensitive to it, and the latter (almost)

maximally sensitive to it. In fact, the predictions for the invariant mass are basically

independent of the shower, with NLO (LO) being equal to aMC@NLO (aMC@LO) over

the whole range considered. The NLO corrections amount largely to an overall rescaling,

with a very minimal tendency to harden the spectrum. The four-lepton pT , on the other

hand, is a well known example of an observable whose distribution at the parton-level LO

is a delta function (in this case, at pT = 0). Radiation, be it through either showering or

hard emission provided by real matrix elements in the NLO computation, fills the phase

space with radically different characteristics, aMC@LO being meaningful at small pT and

NLO parton level at large pT – aMC@NLO correctly interpolates between the two. The

different behaviours under extra radiation of the two observables shown in fig. 1 is reflected

in the scale uncertainty: while in the case of the invariant mass the band becomes very

marginally wider towards large M(e+e−µ+µ−) values, the corresponding effect is dramatic

in the case of the transverse momentum. This is easy to understand from the purely

perturbative point of view, and is due to the fact that, in spite of being O(αS) for any

pT > 0, the transverse momentum in this range is effectively an LO observable (the NLO

effects being confined to pT = 0). The matching with shower blurs this picture, and in

particular it gives rise to the counterintuitive result where the scale dependence increases,

rather than decreasing, when moving towards large pT [18]. Finally, the lower insets of

fig. 1 display the ratio defined in eq. (3.5) which, in agreement with the results of table 2,

is equal to one half in the whole kinematic ranges considered. The only exception is the

small invariant mass region, where off-resonance effects become relevant.

– 13 –
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Four-lepton production

For observables that are sensitive to radiation, corrections 
from LO -> NLO -> aMC@NLO can be sizable

Same feature in scale uncertainty
120

Figure 2: Same as in fig. 1, for the inclusive pT of the positively-charged leptons (left panel), and

the inclusive pT of the same-charge lepton pairs (right panel), both with Z-id cuts.

A gauge-invariant way to suppress off-resonance effects, and to select doubly-resonant

contributions, is that of imposing:

∣∣M(!+!−) − mZ

∣∣ ≤ 10 GeV (3.6)

on all equal-flavour lepton pairs; we call the cut of eq. (3.6) the Z-id cut. Lepton pairs that

pass the Z-id cut are called Z-id matched, and can be roughly seen as coming from the

decay of a (generally off-shell) Z boson. While in the case of the e+e−µ+µ− channel there

is only one way to choose two same-flavour lepton pairs, there are two different pairings in

e+e−e+e− production. In the case both of these pairings result in lepton pairs that fulfill

eq. (3.6), we choose that with the smallest pair invariant mass, and assign the Z-id matched

pairs according to this choice; in practice, this is a rare event. By imposing the Z-id cuts

the M(!+!−!(′)+!(′)−) distribution falls steeply below threshold and gets no contributions

below 160 GeV.

In fig. 2 we present two transverse momentum distributions, relevant to the positively-

charged leptons (left panel), and to same-charge lepton pairs (right panel); hence, there are

two entries in each histogram for any given event. These results are obtained by applying

the Z-id cuts, but we have in fact verified that without such cuts we obtain exactly the

same patterns. In the case of the pT of the individual lepton, the aMC@NLO (aMC@LO)

prediction is fairly close to the NLO (LO) one, but tends to be slightly harder, owing to

the extra radiation generated by the shower. This effect is more pronounced at the LO

than at the NLO, which is the sign of a behaviour consistent with perturbation theory

expectations. In fact, at the LO all hadronic transverse momentum is provided by the

shower, while at the NLO this is not the case; therefore, at the NLO the shower will have

less necessity to “correct” the prediction obtained at the parton level, a tendency which is

naturally embedded in a matching prescription such as aMC@NLO. The scale dependence

– 14 –
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Four-lepton production

Differences between Herwig (black) and Pythia (blue) showers large in 
the Sudakov suppressed region

Contributions from gg initial state (formally NNLO) are of 5-10%
121

Figure 4: Same observables as in fig. 1, for aMC@NLO+gg HERWIG (solid black) and Pythia

(dashed blue) results. The rescaled gg contributions with HERWIG (open black boxes) and Pythia

(open blue circles) are shown separately. Middle insets: scale (dashed red) and PDF (solid black)

fractional uncertainties. Lower insets: aMC@LO/(aMC@NLO+gg) with HERWIG (solid black)

and Pythia (dashed blue).

O(αS), the predictions are quite independent of whether a shower is generated or not.

Slight differences can be seen in the case of the ∆φ distribution, which is indeed known to

be more sensitive than pseudorapidity to extra radiation. The small-pT dominance ensures

that scale and PDF uncertainties are flat over the whole kinematic ranges, and of the order

of those relevant to total cross section.

We now discuss the impact of the O(α2
S) gg channel on our predictions. The argument

for considering such a channel, despite its being of the same perturbative order as all other

NNLO contributions which cannot be included, is the dominance of its parton luminosity

over those of the qq̄ and qg channels. This dominance grows stronger with decreasing

final-state invariant masses, and hence the O(α2
S) versus NLO comparison is significantly

influenced by the cut in eq. (3.3) – by lowering such a cut, the relative importance of the

gg contribution will grow bigger than the 5%-ish reported in table 2. We also discuss in the

following the differences that arise when matching our calculation to Pythia6 rather than

to HERWIG. We remind the reader that, depending on input parameters, Pythia is rather

effective in producing radiation in the whole kinematically-accessible phase space. This is

not particularly useful in the context of a matched computation, where hard radiation

is provided (in a way fully consistent with perturbation theory) by the underlying real-

emission matrix elements. Therefore, we have set the maximum virtuality in Pythia

equal to the four-lepton invariant mass. For consistency, this setting has been used also

when showering the gg-initiated contribution.

Figures 4, 5 and 6 present the same observables as figs. 1, 2 and 3 respectively. In

the main frame, we show the aMC@NLO predictions plus the gg contribution (including

shower), as resulting from HERWIG (solid black) and Pythia (dashed blue) – we shall

– 16 –
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Wjj at CDF

In April CDF reported an excess of events with 3.2 standard deviation 
significance in the dijet invariant mass distribution (with invariant mass 
130-160 GeV) for Wjj events

The update in June (using 7.3 fb-1 of data) increased significance of the 
excess to 4.1 standard deviations
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FIG. 1: The dijet invariant mass distribution. The sum of electron and muon events is plotted. In the left plots we show the
fits for known processes only (a) and with the addition of a hypothetical Gaussian component (c). On the right plots we show,
by subtraction, only the resonant contribution to Mjj including WW and WZ production (b) and the hypothesized narrow
Gaussian contribution (d). In plot (b) and (d) data points differ because the normalization of the background changes between
the two fits. The band in the subtracted plots represents the sum of all background shape systematic uncertainties described
in the text. The distributions are shown with a 8 GeV/c2 binning while the actual fit is performed using a 4 GeV/c2 bin size.

against 5 GeV variations of the thresholds used for all of
the kinematic selection variables, including variations of
the jet ET > 30 GeV threshold. This analysis employs
requirements on jets of ET > 30 GeV and pT > 40 GeV/c
for the dijet system, which improves the overall modeling
of many kinematic distributions. We also test a selection
only requiring jet ET > 20 GeV as in Ref. [19]. This se-
lection, which increases the background by a factor of 4,
reduces the statistical significance of the excess to about
1σ.

We study the ∆Rjj distribution to investigate possi-
ble effects that could result in a mismodeling of the dijet
invariant mass distribution. We consider two control re-
gions, the first defined by events with Mjj < 115 and
Mjj > 175 GeV/c2 and the second defined by events
with pT < 40 GeV/c. We use these regions to de-
rive a correction as a function of ∆Rjj to reweight the
events in the excess region. We find that the reweight-
ings change the statistical significance of the result by
plus or minus one sigma. However, the ∆Rjj distribu-
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Response...

By now ~100 papers have 
appeared trying to explain this 
excess by introducing BSM 
physics

2 papers tried to explain the 
results within the SM (by 
addressing issues in the top 
quark sector)

CDF’s results are not 
confirmed by DØ
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systematic in units normalized by its !1 s.d. Different
uncertainties are assumed to be mutually independent,
but those common to both lepton channels are treated as
fully correlated. We perform fits to electron and muon
selections simultaneously and then sum them to obtain
the dijet invariant mass distributions shown in Fig. 1. The
measured yields after the fit are given in Table I.

To probe for an excess similar to that observed by the
CDF Collaboration [1], we model a possible signal as a
Gaussian resonance in the dijet invariant mass with an
observed width corresponding to the expected resolution

of the D0 detector given by !jj ¼ !W!jj #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mjj=MW!jj

q
.

Here, !W!jj and MW!jj are the width and mass of the
W ! jj resonance, determined to be !W!jj ¼
11:7 GeV=c2 andMW!jj ¼ 81 GeV=c2 from a simulation
of WW ! ‘"jj production. For a dijet invariant mass

resonance at Mjj ¼ 145 GeV=c2, the expected width is
!jj ¼ 15:7 GeV=c2.
We normalize the Gaussian model in the same way as

reported in the CDF Letter [1]. We assume that any such
excess comes from a particle X that decays to jets with
100% branching fraction. The acceptance for this hypo-
thetical process (WX ! ‘"jj) is estimated from a MC
simulation of WH ! ‘"b !b production. When testing the
Gaussian signal with a mean of Mjj ¼ 145 GeV=c2, the
acceptance is taken from theWH ! ‘"b !b simulation with
MH ¼ 150 GeV=c2. This prescription is chosen to be con-
sistent with the CDF analysis, which used a simulation of
WH ! ‘"b !b production with MH ¼ 150 GeV=c2 to esti-
mate the acceptance for the excess that they observes at
Mjj ¼ 144 GeV=c2. When probing other values of Mjj,
we use the acceptance obtained for WH ! ‘"b !b MC
events with MH ¼ Mjj þ 5 GeV=c2.
We use this Gaussian model to derive upper limits on the

cross section for a possible dijet resonance as a function of
dijet invariant mass using the CLs method with a negative

TABLE I. Yields determined following a #2 fit to the data, as
shown in Fig. 1. The total uncertainty includes the effect of
correlations between the individual contributions as determined
using the covariance matrix.

Electron channel Muon channel

Dibosons 434! 38 304! 25
W þ jets 5620! 500 3850! 290
Zþ jets 180! 42 350! 60
t!tþ single top 600! 69 363! 39
Multijet 932! 230 151! 69
Total predicted 7770! 170 5020! 130
Data 7763 5026
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FIG. 1 (color online). Dijet invariant mass summed over elec-
tron and muon channels after the fit without (a) and with
(b) subtraction of SM contributions other than that from the
SM diboson processes, along with the !1 s.d. systematic uncer-
tainty on all SM predictions. The #2 fit probability, Pð#2Þ, is
based on the residuals using data and MC statistical uncertain-
ties. Also shown is the relative size and shape for a model with a
Gaussian resonance with a production cross section of 4 pb at
Mjj ¼ 145 GeV=c2.
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FIG. 2 (color online). Upper limits on the cross section (in pb)
at the 95% C.L. for a Gaussian signal in dijet invariant mass.
Shown are the limit expected using the background prediction,
the observed data, and the regions corresponding to a 1 and 2 s.d.
fluctuation of the backgrounds.
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NLO effects
Both CDF and DØ estimates their backgrounds using LO SMC 
programs (Alpgen+Pythia & Sherpa) normalized to (N)NLO or to 
the data

J. Campbell, A. Martin
& C. Williams have looked
at the same distribution at
parton level to study the
impact of NLO corrections
on differential distributions

Using the newly developed
tool, aMC@NLO, we would
like to address the main background, W+2j, at the NLOwPS level to 
see how well LOwPS or fixed order NLO describe this distribution
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3

Figure 2: NLO predictions for mjj using the “inclusive” CDF cuts

(two or more jets). The labelling is as in Fig. 1.

Process σLO [fb] σNLO [fb] Ratio (NLO/LO)

W + 2j 4984(8)+41%
−27% 5704(24)+9%

−13% 1.14

Z + 2j 213(1)+42%
−27%

236(2)+8%
−12%

1.11

WW (→ qq) 142.2(4)+8%
−7% 252.3(8)+8%

−6% 1.75

WZ(→ qq) 27.24(8)+9%
−8% 47.76(12)+8%

−7% 1.75

ZW (→ qq) 5.11(2)+10%
−9% 9.02(2)+9%

−7% 1.77

tt (fully-") 48.5(4)+46%
−28% 67.1(1)+4%

−11% 1.38

tt (semi-") 686.9(1)+45%
−29%

674.2(1)+3%
−11%

0.98

Single t (s) 25.92(4)+10%
−8% 41.68(4) +7%

−5% 1.61

Single t (t) 61.0(1)0%−2% 59.8(1)+1%
−0% 0.98

Table II: LO and NLO predictions for cross sections using the “in-

clusive” CDF cuts (two or more jets). Uncertainties are calculated

and indicated in the same fashion as for Table I.

use a matched set of events, while the top backgrounds sim-

ply apply the parton shower to a single set of tree-level matrix

elements. For the parton shower, particles are formed into jets

using the midpoint cone algorithm (R = 0.4) via FastJet [27]
and we use the CTEQ6L PDF set [28].

We first compare the top distribution under the exclusive

and inclusive cuts (with pj
T > 30 GeV) in Fig. 4. To best

compare the shapes we have adjusted the distribution obtained

from the parton shower such that the W peak is aligned with

the parton-level calculation, thus partially correcting for frag-

mentation and hadronisation effects. As expected from the

small corrections to the top processes at NLO, the normalisa-

tion of this background is in approximate agreement between

the two approaches. However the parton shower gives rise to

a somewhat different shape, particularly in the inclusive case

where the peak around 140 GeV is broadened.

The other crucial background process is W+ jets, for which

we compare the results fromMCFM and the parton shower in

Figure 3: NLO predictions for mjj using the “inclusive” CDF cuts

(two or more jets), with an increased jet threshold, pj
T > 40 GeV.

The labeling is as in Fig. 1.

Process σLO [fb] σNLO [fb] Ratio (NLO/LO)

W + 2j 2568(4) 2784(16) 1.08

Z + 2j 104.6(8) 112(1) 1.07

WW (→ qq) 66.6(1) 131.4(4) 1.98

WZ(→ qq) 14.56(4) 27.96(8) 1.92

ZW (→ qq) 2.28(1) 4.56(2) 2.00

tt (fully-") 38.2(8) 53.92(8) 1.41

tt (semi-") 655.0(7) 642.2(7) 0.98

Single t (s) 19.44(4) 30.96(4) 1.59

Single t (t) 43.36(8) 42.20(8) 0.97

Table III: LO and NLO cross sections for the pj
T > 40 inclusive final

state. Scales are set at µF = µR = 2mW .

Fig. 5. We present the NLO and showered results normalised

to their own cross sections so that we can compare the rel-

ative shapes. We observe that the change in the shape of the

NLO calculation as the scale is varied is small. The prediction

from the parton shower has a similar shape as the parton-level

results in the tail but differences appear at lower mjj . How-

ever this is precisely the region in which we would expect the

fixed order calculation to begin to break down and the parton

shower to be more reliable.

CONCLUSIONS

We have presented NLO predictions for cross sections and

dijet invariant mass distributions for one lepton, missing ET

and two jets at the Tevatron. We have used a variety of cuts,

including those used by the CDF collaboration who have re-

cently reported an excess in this distribution around 150 GeV.

By calculating the distribution of the invariant mass of the

dijets at NLO we have ruled out large NLO K-factors as a
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Computational challenge

This is the first time that such a process with so many 
scales and possible (IR) divergences is matched to a 
parton shower at NLO accuracy

Start with W+1j production to validate processes which 
need cuts at the matrix-element level

To check the insensitivity to this cut:

generate a couple of event samples with different cuts 
and show that the distributions after analysis cuts are 
statistically equivalent

134
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pp ! Wj
For W+1j the easiest cut would 
be in on the pT of the W boson

However, for validation purposes 
it is more appropriate to apply 
this cut on the jet instead 
(because that is what we’ll be 
doing in W+2j ). Same at LO, 
but different at NLO

Different cuts at generation level 
yield the same distributions at 
analysis level if the analysis level 
cut is 3-4 times larger
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pp ! Wjj
Two event samples with 5 GeV and 10 GeV pT cuts on the jets at 
generation level, respectively, each with 10 million unweighted events

Renormalization and factorization scales equal to µR = µF = HT/2

               2µR = 2µF = HT = %( pT,l#2 + ml#2 ) + ! |pT,i|
where sum is over the 2 or 3 partons (and the matrix element level)

Jets are defined with anti-kT and R=0.4

MSTW2008(N)LO PDF set for the (N)LO predictions (with !s(mZ) 
from PDF set using (2)1-loop running)

mW = 80.419 GeV,
GF = 1.16639·10-5 GeV-2,
!-1 = 132.507,
$W = 2.0476 GeV

136
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pp ! Wjj
The two generation level 
cuts agree for high enough 
momenta (or harder 
analysis cuts)

Middle plot shows ratio of 
NLO (solid), LO (dotted) 
and LOwPS (dashed) over 
aMC@NLO

Good agreement with (N)
LO, slight difference in 
shape

Tails have low statistics, in 
particular for the 5 GeV 
generation cuts
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to generation cuts pT = 10 GeV. The upper (red), middle (blue), and lower (green) pairs

of histograms are obtained with the analysis cuts pT = 10, 25, and 50 GeV respectively.

The lower insets display three curves, obtained by taking the ratios of the pT = 5 GeV

generation-cut results over the pT = 10 GeV generation-cut results, for the three given

analysis cuts (in other words, these are the ratios of the solid over the dashed histograms).

Fully-unbiased predictions are therefore equivalent to these ratios being equal to one in the

kinematic regions of interest.

Figure 1: Transverse momentum of the hardest jet (upper left plot), invariant mass of the pair

of the two hardest jets (upper right plot) and distance between the two hardest jets in the η − ϕ

plane (lower plot), in Wjj events and as predicted by aMC@NLO. See the text for details.

Inspection of fig. 1, and of its analogues not shown here, allow us to conclude that the

results follow the expected pattern: when one tightens the analysis cuts, the bias due to

the generation cuts is reduced, and eventually disappears. Although all observables display

this behaviour, the precise dependence on generation cuts is observable-specific; the three

cases of fig. 1 have been chosen since they are representative of different situations. The

transverse momentum of the hardest jet shown in the upper-left plot of fig. 1 is (one of)

the very observable(s) on which generation cuts are imposed. Therefore, as one moves

– 5 –
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pp ! Wjj

Dijet invariant mass

For analysis cuts larger 
than 25 GeV the two 
event samples coincide 
(except for the very low 
mass region)

For smaller analysis cuts 
the bias is flat in this 
distribution

138

to generation cuts pT = 10 GeV. The upper (red), middle (blue), and lower (green) pairs

of histograms are obtained with the analysis cuts pT = 10, 25, and 50 GeV respectively.

The lower insets display three curves, obtained by taking the ratios of the pT = 5 GeV

generation-cut results over the pT = 10 GeV generation-cut results, for the three given

analysis cuts (in other words, these are the ratios of the solid over the dashed histograms).

Fully-unbiased predictions are therefore equivalent to these ratios being equal to one in the

kinematic regions of interest.

Figure 1: Transverse momentum of the hardest jet (upper left plot), invariant mass of the pair

of the two hardest jets (upper right plot) and distance between the two hardest jets in the η − ϕ

plane (lower plot), in Wjj events and as predicted by aMC@NLO. See the text for details.

Inspection of fig. 1, and of its analogues not shown here, allow us to conclude that the

results follow the expected pattern: when one tightens the analysis cuts, the bias due to

the generation cuts is reduced, and eventually disappears. Although all observables display

this behaviour, the precise dependence on generation cuts is observable-specific; the three

cases of fig. 1 have been chosen since they are representative of different situations. The

transverse momentum of the hardest jet shown in the upper-left plot of fig. 1 is (one of)

the very observable(s) on which generation cuts are imposed. Therefore, as one moves

– 5 –
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pp ! Wjj
Distance between the jets

A small bias remains at 25 
GeV analysis in the tail of 
the distribution, but 
reduced a lot from lower 
cuts analysis cuts

5 GeV sample probably 
ok, 10 GeV gen. cut is 
a bit too hard

Of all distributions we 
have looked at, this one 
shows the largest bias due 
to generation cut

139

to generation cuts pT = 10 GeV. The upper (red), middle (blue), and lower (green) pairs

of histograms are obtained with the analysis cuts pT = 10, 25, and 50 GeV respectively.

The lower insets display three curves, obtained by taking the ratios of the pT = 5 GeV

generation-cut results over the pT = 10 GeV generation-cut results, for the three given

analysis cuts (in other words, these are the ratios of the solid over the dashed histograms).

Fully-unbiased predictions are therefore equivalent to these ratios being equal to one in the

kinematic regions of interest.

Figure 1: Transverse momentum of the hardest jet (upper left plot), invariant mass of the pair

of the two hardest jets (upper right plot) and distance between the two hardest jets in the η − ϕ

plane (lower plot), in Wjj events and as predicted by aMC@NLO. See the text for details.

Inspection of fig. 1, and of its analogues not shown here, allow us to conclude that the

results follow the expected pattern: when one tightens the analysis cuts, the bias due to

the generation cuts is reduced, and eventually disappears. Although all observables display

this behaviour, the precise dependence on generation cuts is observable-specific; the three

cases of fig. 1 have been chosen since they are representative of different situations. The

transverse momentum of the hardest jet shown in the upper-left plot of fig. 1 is (one of)

the very observable(s) on which generation cuts are imposed. Therefore, as one moves

– 5 –
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pp ! Wjj

To slightly simplify the 
analysis, the MC truth is 
used to assign the lepton 
to the W-boson decay

Only W+ events (simply a 
factor 2)

No underlying event
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towards large pT ’s, one expects the bias due to generation cuts to decrease, regardless of

values of the pT cut used at the analysis level. This is in fact what we see. Still, a residual

dependence on generation cuts can be observed at relatively large pT ’s for looser analysis

cuts; this could in fact be anticipated, since the events used here are Wjj ones – hence,

the next-to-hardest jet will tend to have a transverse momentum as close as possible to

the analysis pT cut, and thus to the region affected by the generation bias in the case of

the looser analysis cuts. The dijet invariant mass, shown in the upper-right plot of fig. 1,

tells a slightly different story. Namely, the hard scale associated with this observable is not

in one-to-one correspondence with that used for imposing the analysis cuts, at variance

with the pT of the hardest jet discussed previously. Hence, the effects of the generation-

level cuts are more evenly distributed across the whole kinematical range considered, as

can be best seen from the lower inset. Essentially, the bias here amounts largely to a

normalization mismatch, which disappears when tightening the analysis cuts. Finally, the

∆R distribution, presented in the lower part of fig. 1, is representative of a case where both

shapes and normalization are biased. There is a trend towards larger biases at large ∆R,

which is understandable since this region receives the most significant contributions from

large-rapidity regions, where the transverse momenta tend to be relatively small and hence

closer to the bias region.

We conclude this section with some further comments on validation exercises. Firstly,

we started by testing the whole machinery in the simpler case of Wj production. Although,

as was discussed before, for this process generation cuts may be imposed on pT (W ), we

have chosen to require the presence of at least one jet with a transverse momentum larger

than a given value, so as to mimic the strategy followed in the Wjj case. Secondly, we have

checked that we obtain unbiased results by suitably changing the jet-cone size. Thirdly,

OPTIONAL we can exploit the fact that the starting scale of the shower is to some

extent arbitrary, and the dependence upon its value is very much reduced in the context

of an NLO-PSMC matched computation. As was discussed in ref. [29], in MC@NLO the

information on the starting scale is included in the MC counterterms, and the independence

of the physical results of its value constitutes a powerful check of a correct implementation.

We have verified that this is indeed the case.

3. Wjj production at the Tevatron

The hard events obtained with the generation cuts described above can be used to impose

the selection cuts used by the CDF collaboration [1]. The latter are as follows:

• minimal transverse energy for the lepton: ET (l) > 20 GeV;

• maximal pseudo rapidity for the lepton: |η(l)| < 1;

• minimal missing transverse energy: E/T > 25 GeV;

• minimal transverse W -boson mass: MT (lνl) > 30 GeV;

• jet definition: JetClu algorithm with 0.75 overlap and R = 0.4;

– 6 –

• minimal transverse jet energy: ET (j) > 30 GeV;

• maximal jet pseudo rapidity: |η(j)| < 2.4;

• minimal jet pair transverse momentum: pT (j1j2) > 40 GeV;

• minimal jet-lepton separation: ∆R(lj) > 0.52;

• minimal jet-missing energy separation: ∆φ(E/T j) > 0.4;

• hardest jets close in pseudorapidity: |∆η(j1j2)| < 2.5;

• jet veto: no third jet with ET (j) > 30 GeV and |η(j)| < 2.4;

• lepton isolation: transverse hadronic energy smaller than 10% of the lepton transverse

energy in a cone of R = 0.4 around the lepton.

These cuts (and their analogues in the D0 analysis [2]) are tighter than the pT = 25 GeV

analysis cut previously discussed. Since the latter was seen to give unbiased results in

the central rapidity regions relevant here, we deem our approach safe. To simplify the

analysis slightly, we have used the MC truth to determine which charged lepton (if more

than one) emerges from the hard subprocess (i.e., can be interpreted as due to the decay

of a W boson); in the case of present process (i.e., without the contamination of the Zjj

background) this is essentially what one would have obtained anyhow by demanding the

charged lepton to be hard, central, and isolated. We have not included the simulation of the

underlying event in our predictions. The cuts reported above (which we dub “exclusive”)

have also been slightly relaxed by CDF (see [30]), by accepting events with three jets or

more in the central and hard region – we call these cuts “inclusive”.

Figure 2: Invariant mass of the pair of the two hardest jets, with CDF/D0 exclusive (left panel)

and inclusive (right panel) cuts. See the text for details.

In addition to the aMC@NLO predictions, we have also performed parton-level LO and

NLO computations, and showered events obtained by unweighting LO matrix elements as

well (we call the corresponding result aMC@LO). As is well known, the latter case requires

– 7 –
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pp ! Wjj
Dijet invariant mass with/without jet veto

This is the distribution in which CDF 
found an excess of events around 130-160 
GeV

No differences in shape between the 5 and 
10 GeV generation level cuts

No sign of enhancement over (N)LO or 
LOwPS in the mass range 130-160 GeV

141
Figure 2: Invariant mass of the pair of the two hardest jets, with CDF/D0 exclusive cuts. See the

text for details.

In addition to the aMC@NLO predictions, we have performed parton-level LO and

NLO computations. Finally, we have showered events obtained by unweighting LO matrix

elements as well. As is well known, the latter case is potentially plagued by severe double-

counting effects which, although formally affecting perturbative coefficients of order higher

than leading, can be numerically dominant. We have indeed found that this is the case

for the cuts considered here: predictions obtained with generation cuts pT = 5 GeV and

pT =10 GeV differ by 30% or larger for total rates (shapes are in general better agreement),

even for the analysis cut of pT = 50 GeV. We have therefore opted for using a matched

LO sample, which we have obtained with Alpgen [33] interfaced to HERWIG through the

MLM prescription [5]. In order to do this, we have generated W + n parton events, with

n = 1, 2, 3. The dominant contribution to Wjj observables is due to the n = 2 sample,

but that of n = 3 is not negligible. The size of the n = 1 contribution is always small,

and rapidly decreasing with dijet invariant masses; it is thus fully safe not to consider

W + 0 parton events.

In figs. 2 and 3 we present our predictions for the invariant mass of the pair of the

two hardest jets with exclusive and inclusive cuts, respectively. The three histograms in

the main frames are the aMC@NLO (solid red), Alpgen+MLM (dashed blue), and NLO

parton level (green symbols) predictions. The two NLO-based results are obtained with

the pT = 10 GeV generation cuts. The Alpgen+MLM curves have been rescaled to be as

close as possible to the NLO ones, since their role is that of providing a prediction for the

– 8 –

Figure 3: Invariant mass of the pair of the two hardest jets, with CDF/D0 inclusive cuts. See the

text for details.

shapes, but not for the rates (incidentally, this is also what is done in the experimental

analyses when control samples are not available). The upper insets show the ratios of the

Alpgen+MLM and NLO results over the aMC@NLO ones. The middle insets display the

fractional scale (dashed red) and PDF (solid black) uncertainties given by aMC@NLO,

computed with the reweighting technique described in ref. [34]. The lower insets show the

ratios of the aMC@NLO results obtained with the two generation cuts, and imply that

indeed there is no bias due to generation cuts. We have also checked that removing the

lepton isolation cut does not change the pattern of the plots, all results moving consistently

upwards by a very small amount.

By inspection of figs. 2 and 3, we can conclude that the three predictions agree

rather well, and are actually strictly equivalent, when the theoretical uncertainties af-

fecting aMC@NLO are taken into account (i.e., it is not even necessary to consider those

relevant to Alpgen+MLM and parton-level NLO). This is quite remarkable, also in view of

the fact that the dominant contribution to the latter, the scale dependence, amounts to a

mere (+10%,−15%) effect. We have verified that such a dependence is in agreement with

that predicted by MCFM [35].

In spite of their being not significant for the comparison with data, it is perhaps inter-

esting to speculate on the tiny differences between the central aMC@NLO, Alpgen+MLM,

and NLO predictions. The total rates given by aMC@NLO and NLO are close but not

identical; this is normal, and is a consequence of the fact that the kinematical distribu-

– 9 –
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