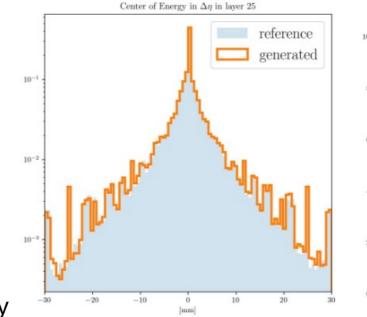
Task 12.3: Simulation

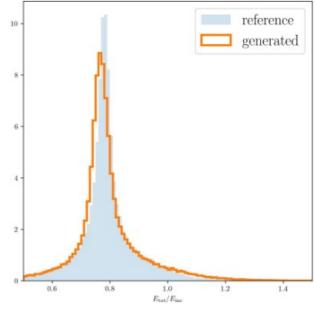
Peter McKeown
CERN, EP-SFT
On behalf of Task 12.3

AIDAInnova WP12 General Meeting

05.02.2025

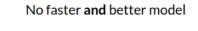
This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004761.





CERN

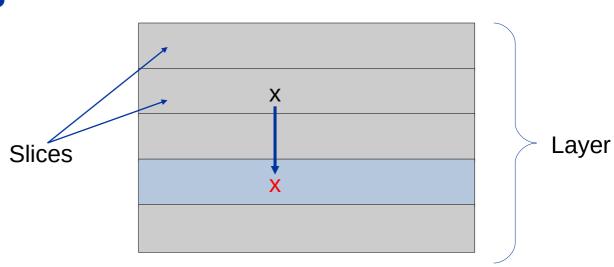
- Returned to evaluation of updated CaloDiT model on CaloChallenge benchmarks
 - Training from scratch somewhat better than adaption
 - Suspect result of incident energy distribution (power spectrum vs flat)
- Including distillation, CaloDiT is competitive with other CaloChallenge models in terms of accuracy and speed



More details in Piyush's update

> Rank comparing CaloChallenge Dataset-2 submissions

Metric	AUC low-level	AUC high-level	AUC ResNet	FPD (x10^3)	KPD (x10^3)	CPU time (ms)	GPU time (ms)
Value	0.5939	0.5598	0.6343	20.0617 ± 0.7407	0.0883 ± 0.0944	6349.02 ± 7.6	171.8 ± 0.13
Rank	3	2	1	1	2	10	8
Rank ^{\$}	1	1	1	1	1	-	-

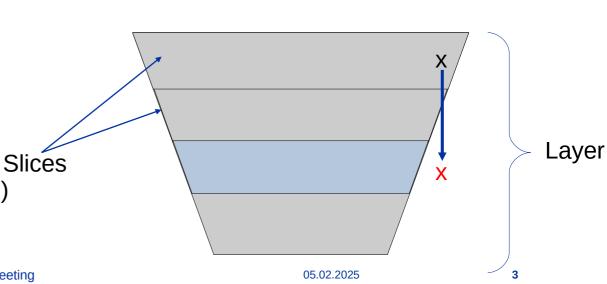


*Inference times are biased, computed on a different machine compared to Claudius

\$Rank considering all models faster than this one on CPU

DDFastShowerML Updates

- Integration of Par04-like scoring meshes for DD4hep
 - Including placement into detector readout branch
- Use 'all active' calorimeter
 - Modify cellID of fast hit such that it lands in sensitive
 - Thanks Andre for VolManager tips!
- Validation for CLD (including with/without CaloDiT) currently underway
- Hadronic shower integration with PionClouds data from Anatolii (Using HDF5 loading) - branch
 - WIP Debugging Region assignment across multiple sub-detectors
- Other activity:
 - MR (!22): Fixed debug-mode build issue (thanks Juan!)
 - MR (!23): Add L2LFlows in progress (with Thomas+Thorsten)

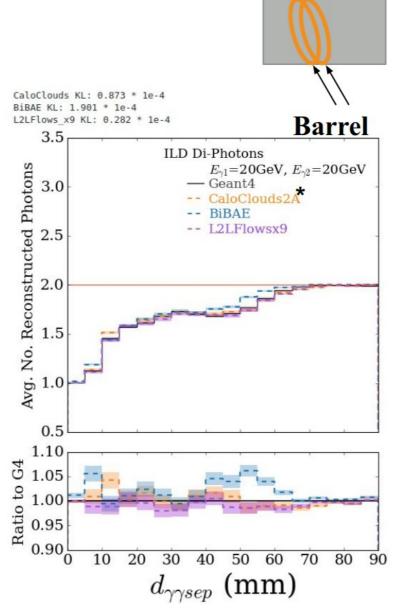

Non- sensitive

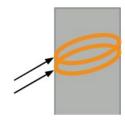
Non-sensitive

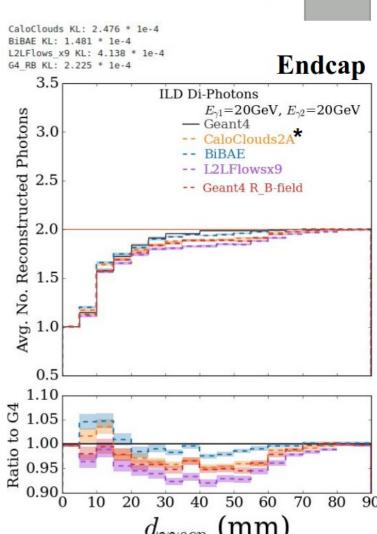
Sensitive

Sensitive

What won't work... layers with variable length slices

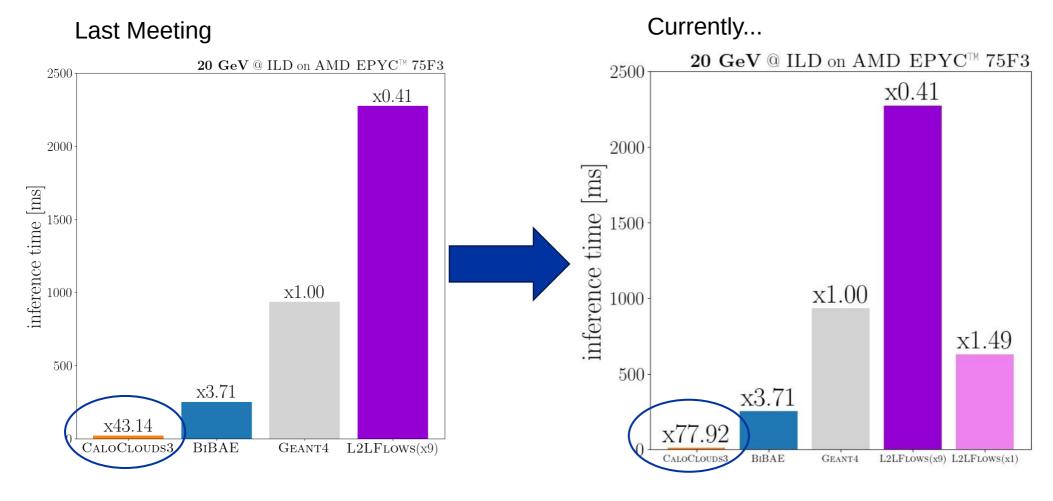



Peter McKeown | WP12 General Meeting


DESY

- Di-Photon benchmark extended to endcap (also studying effect of B-field)
- In both barrel and endcap: adjusted to take into account flight from IP (assumed by Pandora)

More details in Anatolii's update



DESY

- More optimisations of Shower Flow and PointWise net in CaloClouds
- CaloClouds (run in DDFastShowerML, CPU) now 460x faster than Geant4 for 100 GeV photons!

Summary and Outlook

- @CERN:
 - Updated CaloDiT model performance for CaloChallenge Next Steps:
 - Mixer models (lighter-weight attention) with IBM- trade of speed/accuracy
 - Soon: publication
- DDFastShowerML
 - Possible to run 'Parallel world' scoring meshes (a la Par04) in actual detector readout
 - Validation for CLD detector ongoing
 - In the future: also try for non-CALICE calorimeters (e.g. allegro)
 - Support for Hadronic showers is WIP

- @DESY:
 - Di-Photon benchmark added for endcap
 - Adjusted for Pandora particulars
 - CaloClouds becomes even faster

Next Steps:

- Studying theoretical optimum for choice of representation (regular grid/ high granularity clusters)
- Work on Pion showers ongoing

