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Black holes, as seen from the outside, are described by an ordinary
quantum system.

It would be nice to solve the quantum system. This means, e.g.,
computing correlators like %tr(e‘BHO) on the LHS.
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For certain special black holes, we know explicitly what the
quantum system is (large N super Yang-Mills gauge theories)

So why haven't we solved these black holes yet?
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Why bootstrap?

The horizon:
> Bekenstein-Hawking entropy = ﬁ = need large N.
» Particle falling towards the horizon p ~ 2t/ = maximal

chaos [Shenker & Stanford], [Maldacena, Shenker, Stanford], - - -, [HL
Maldacena Zhao], - - - = strong coupling

These features make solving the dual quantum mechanics hard.
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Why bootstrap?

numerics analytic

» numerics is hard at large N

> analytic methods are sparse due to strong coupling
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Bootstrap: a timeline

o ok w

1. 2. 3. 4

‘84 2016 2020 )
5. ( ‘99 6.
L

today

CFT bootstrap [Ferrara '73], [Polyakov '74], [Belavin, Polyakov,
Zamolodchikov '84]

Lattice Yang Mills bootstrap [Anderson & Kruczenski '16, Kazakov &
Zheng '22]

Matrix bootstrap [HL '20]

Quantum mechanical bootstrap [Han, Hartnoll, Kruthoff '20]
Virial bound [Polchinski '99]

BFSS [today]
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Outline

d = 0 (stat mech)

d=1

solvable

1-matrix integral

1-matrix quantum mech
¢ = 1 matrix model

unsolvable

multi-matrix integral

DO0-brane quantum mech
BFSS matrix theory

DO0-brane theory = simplest known system dual to a certain black
hole = dimensional reduction of N'=4 SYM to 0+1d.
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1-Matrix model

Probability distribution over N x N Hermitian matrix M;:

1 e 1 g
M NtI‘V(M) - 2 =
p(M) = —e L VM) = oM M
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1-Matrix model

Probability distribution over N x N Hermitian matrix M;:

1 e 1 g
M NtI‘V(M) - 2 =
p(M) = —e L VM) = oM M

Goal: compute moments {tr M*) as a function of g.

(tr M?) ! /dl\/le‘NQ VM) g 2

= lim =
Nggoz
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Bootstrapping matrices

1. Guess the value of some simple correlator, e.g. (tr M?)
2. Feed it through the loop eqns to generate more correlators
3. Demand that <tr OT(’)> > 0.

11/49



Loop (Schwinger-Dyson) equations

@ - - " <§

> relates lower-pt correlators to higher-pt correlators
» uses large N factorization ('t Hooft)

k—1
(tr MF) =) " (tr MO (tr MF172) + g (tr M)
=0
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Positivity

Naive algorithm: starting with some guess for <tr M2>, generate

moments <tr M4> , <tr M6> , <tr M8> R
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Positivity

More systematically, we can consider a general polynomial in the
matrix M:
0= a M= tr0t0>0.

This implies that o Mjja; > 0 for all coefficients o, where we have
assembled all the correlators into a big matrix M;; = (tr M"/):

1 (tr M)y (tr I\/I2>
M= (tr M) <tr /\/I2> <tr /\/I3> =0
<tr /\/I2> <tr /\/I3> <tr M4>

Here M;; = (tr M),

14 /49



Review of the matrix bootstrap

— exact soln

— Ms5x5 =0

0 1 2 3 4 5 1.00 1.02 1.04 1.06 1.08 1.10

As the size of M increases, rapid convergence to the exact
solution.
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Metastability

To address the issue of metastability, consider g < 0. The
potential is unbounded from below:

V(M)

/ \

In the large N limit, tunneling is suppressed.

16 /49



Metastability

3.0

-
a
T

-0.08 -0.06 -0.04 -0.02 0.00
9

For —g, < g < 0 the model still makes sense at N = oo

17/49



d = 0 (stat mech)
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1-matrix quantum mech
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Multi-matrix integrals

Main challenge: exponentially many correlators for a given length
Lieg, for L=T:
(Tr ABABBBA) , (Tr BBBABAB) , - - -

Also more loop equations and more positivity constraints:

1 Tr A Tr B
TTA TrA®> TrAB
M= vB TrBA TrB

19/49



Despite these challenges, the bootstrap gives strong results for
multi-matrix integrals [HL '20], e.g.,
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Z= /dA dBe Nt VIAB)
1
V(Xa Y) = _5[’47 8]2 + V(A) + V(B)7

1 1
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Despite these challenges, the bootstrap gives strong results for
multi-matrix integrals [HL '20], e.g.,

Z= /dA dBe Nt VIAB)
1
V(X7 Y) = _5[’47 8]2 + V(A) + V(B)7
1 1
— 7)(2 7)(4
v(X) =X+

Using non-linear relaxation, one can convert it to a standard
semi-definite programming problem [Kazakov & Zheng '22].

0.4217836 < (tr A*) < 0.4217847
0.3333413 < (tr A*) < 0.3333421

~ 6 decimal digits on a laptop!
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1-matrix QM

N? non-relativistic particles arranged in a matrix.

i[X;j, Pk/} = (5,‘/5]/(.
Hamiltonian: )
1
H= N<—HP2+1HX2+5ﬂX4> .
2 2 4
U(N) gauge constraint:
Jite = 1(XijPj — PiiXj) + Noy = 0

[for a review, see Klebanov hep-th/9108019] [Brezin, Itzykson, Parisi, Zuber,
Douglas, Klebanov, Kutasov, Maldacena, Martinec, Takayangi, Toumbas,
Verlinde, --- ]
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1-matrix QM

N? non-relativistic particles arranged in a matrix.

i[X,'J', Pk/} = 5iI6jk‘

Hamiltonian: . )
H= N<§TrP2+m7TrX2+ gTrX4> .
U(N) gauge constraint:
Jie = 1(X;Py — PyXj) + Noge = 0

known as ¢ =1 or ¢ = 1 matrix model®.

[for a review, see Klebanov hep-th/9108019] [Brezin, ltzykson, Parisi, Zuber,
Douglas, Klebanov, Kutasov, Maldacena, Martinec, Takayangi, Toumbas,
Verlinde, --- ]

Lin the double scaling limit
21/49



Review of the quantum mechanical bootstrap

1. Replace loop eqns with O’ =[O, H]. In energy eigenstates
(E| O'|E) = (E|O|E) E— E(E[O|E) = 0.
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O’ = [O, H]. In energy eigenstates
(E| O'|E) = (E|O|E) E— E(E[O|E) = 0.

example: 0 = ([tr XP, H]) = —tr P* + tr X*> + gtr X*

2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ©)
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O’ =[O, H]. In energy eigenstates
(E| O'|E) = (E|O|E) E— E(E|O|E) = 0.
2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ©)
(EltrO'O|E) > 0= M; = (E|tr Ol O |E) > 0

3. Optional: ground state bootstrap positivity:
<OT[H, O]>gs = <OTHO>gs - EgS<OTO>gs >0
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O’ =[O, H]. In energy eigenstates
(E| O'|E) = (E|O|E) E— E(E|O|E) = 0.
2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ©)
(EltrO'O|E) > 0= M; = (E|tr Ol O |E) > 0

3. Optional: ground state bootstrap positivity:
Nij = (O][H, O])gs = 0

22 /49



Ground state bootstrap

0332
0.45
0331
0.4
TrXx? /0.33
035
0329
03
1.15 125 135 145 0.328
1.301 1.303 1.305 1307

Ey

+ denotes the exact solution for g =1
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Ground state bootstrap

0.33143

0.33142
Trx?

0.33141

0.3314
1.3019 1.30191 1.30192

Ey

+ denotes the exact solution for g = 1.
~ 6 digit precision on a laptop.
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solvable
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D0-brane quantum mechanics

Hilbert space: 9 bosonic matrices and 16 fermionic matrices.
Transform as a vector and spinor of SO(9).

<g2P2 L XX = et [thm)

[Banks, Fischler, Shenker, Susskind '97]

Most of what we know on the matrix side is due to heroic Monte
Carlo simulations [Kabat et al., Anagnostopoulos et al., Hanada et al., ...,
Berkowitz et al., Pateloudis et al.]
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D0-brane quantum mechanics

't Hooft limit: N — oo holding fixed A3 = g Np3.
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D0-brane quantum mechanics

't Hooft limit: N — oo holding fixed A3 = g Np3.
In the strongly coupled regime A33 > 1, dual to a metastable

black hole in Type IlA [ltzhaki, Maldacena, Sonneschein, Yankielowicz]:
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D0-brane quantum mechanics

't Hooft limit: N — oo holding fixed A3 = g Np3.
In the strongly coupled regime A33 > 1, dual to a metastable

black hole in Type IlA [ltzhaki, Maldacena, Sonneschein, Yankielowicz]:

ds® dr TV
~ —f(r)Ade? + 7 )rc+ (Z) do?

Sg shrinks with r. At r~ \'/3 = string scale curvature.

26 /49



At E/N* > A\/3 geometry is nowhere reliable.

27 /49



Kinematic constraints

Less trivial example:

Magyy = (e (v ) )
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Kinematic constraints
Less trivial example:

Mgy = (tr(voyPpty7) )

Viewed as a matrix in the {«, 8} and {v,n} indices, positivity
requires M > 0.

28 /49



Kinematic constraints

Less trivial example:
Magny = (tr (v 00y ) )
Using the "addition of SO(9) angular momentum" rules:

(16)* = (16 x 16)? = (1 + 9 + 36 + 84 + 128)°
= 5(1) + non-singlets

Thus group theory determines this 16* = 65536 to just 5
unknowns.

I . UK IJK
MO‘B’Y’Y = 60‘5577531 + YaBVned9 + YaBYned36 + YaB Tne 984
UKL, IJKL
T %8 Ve 128
Cyclicity and the fermion anti-commutation relations cuts this
further to just 2 unknowns.

28 /49



Expand s-channel block in terms of t-channel blocks:

B n

/8 Rs K o ZF 16 16
I I T T Re
a € ‘

o €

= 6j symbol. At higher levels, need higher-pt crossing kernels.
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Kinematics determined M., in terms of 2 unknowns. We still
need to impose positivity of a large matrix Mg ,. By
decomposing 1,15 into irreps, one can easily diagonalize M.
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Kinematics determined M., in terms of 2 unknowns. We still
need to impose positivity of a large matrix Mg ,. By
decomposing 1,15 into irreps, one can easily diagonalize M.

The upshot is that by leveraging the symmetries of the model, the
DO-brane bootstrap is practical. ©
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Level 4
0.8
Level 5
0.6 Level 6
N
M Level 7
~
0.4 Level 8%
Level 9
0.2
Monte Carlo
0.
0. 0.2 0.4 0.6 0.8 1.

(tr X?)

Cross + is the Monte Carlo result® of [Berkowitz et al.'16].
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0.25
0.2 Level 4
Level 5
& 015
CE< Level 6
E Level 7
s 01
Level 8*
0.05 (0.36570.142) Level 9
0.346,0.129)
0. (0.335,0.122)
0. 0.1 0.2 0.3 0.4 0.5

{tr X%

The lower bound on (tr X*X?) was derived (up to some factors) in
[Polchinski '99]. It can also be improved to finite energy [HL '23].
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method (tr X?)
Mont§ Carlo ~ 0.37+0.05
[Pateloudis et al.'22]
primitive bootstrap > 0.1875
[HL 23]
bootstrap > 0.294
level 6
bootstrap > 0.331
level 7
bootstrap
> 0.
level 8T =031t
bootstrap > 0.3451

level 9
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method (tr X?)
Mont§ Carlo ~ 0.37+0.05
[Pateloudis et al.'22]
primitive bootstrap > 0.1875
[HL '23]
bootstrap > 0.294
level 6
bootstrap > 0.331
level 7
bootstrap
> 0.
level 87" = 0301
bootstrap > 0.3451
level 9

~ 90% of the MC value with just level 7:
19 variable SDP, ~ 170 EoMs, matrices of size < 20 x 20.
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Metastability in Monte Carlo

0.5

observable
o
S
/

o
w

o
N

0.1

——

0.0

00 01 02 03 04 05 06 07 08
W

- Myers = E/N?> - R%/10

Monte Carlo results [Pateloudis et al. '22]
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Toy supermembrane problem
1.

0.85}

0.7}

Ky 0.55}

0.4}

0.568

0.25} 0.5605

0.553
0.742 0.7575 0.773

0.1 : : : :
0.6 0.8 1. 12 1.4 1.6 18

(x*)
In a simpler toy problem, we see a similar-looking peninsula at low
levels, but an island at higher levels.
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| have presented some evidence that the bootstrap could yield
precision data on some correlators like {tr X*).

A high precision measurement of these and/or related correlators
could give the leading corrections to the semiclassical black hole
background. [A nice candidate is (Ogps) ~ TA79]

In principle, we could use this to constrain unknown O(a/3)
corrections to the lla effective action. [See Hanada, Berkowitz,
Pateloudis, ... for similar discussions involving BH thermodynamics. Similar in
spirit to the CFT bootstrap program by e.g. Binder, Chester, Pufu, Wang, ...

]
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Future directions

Islands?

v

Constraints on the bound state?

v

v

Finite energy/temperature

v

Large N lattice systems, especially those with sign problems?
[Anderson & Kruczenski, Kazakov & Zheng, ..]
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Future directions

Islands?

v

Constraints on the bound state?

v

v

Finite energy/temperature

v

Large N lattice systems, especially those with sign problems?
[Anderson & Kruczenski, Kazakov & Zheng, ..]

BMN model, other matrix models?
IKKT??7?

Thanks!

v

v
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Sign problem?

[WIP w/ Gauri Batra and Haifeng Tang]
Motivated by the agreement with the bootstrap (at least £ < 9),
we wish to study the sign problem. Integrating out the fermions,

/ DyDce™> = Pf(A, X') — |Pf(A, X)|
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Sign problem?

[WIP w/ Gauri Batra and Haifeng Tang]
Motivated by the agreement with the bootstrap (at least £ < 9),
we wish to study the sign problem. Integrating out the fermions,

/ DyDce™> = Pf(A, X') — |Pf(A, X)|

Calculate in perturbation theory:
IPf(A, XN [2" = Pf(A, XI)"Pf(A*, X))

High temperature expansion — reduce to a matrix integral +
massive modes. So far: agreement at 1-loop...
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| have presented some evidence that the bootstrap could yield
precision data on some correlators like {tr X?).

In the remainder of the talk, | will comment on:
What could we hope to learn by measuring <tr X2> precisely?
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Suppose that one day we have high precision measurements of 1-pt
functions like (tr X"). What can we learn?

The semiclassical BH geometry and its stringy corrections
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Suppose that one day we have high precision measurements of 1-pt
functions like (tr X"). What can we learn?

The semiclassical BH geometry and its stringy corrections

In principle, this includes properties that are currently inaccessible
by worldsheet methods.

[See Hanada et al., Berkowitz et al., Pateloudis, et al.for similar discussions

involving the BH thermodynamics.]
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In principle, a theory of quantum gravity should predict the
higher-derivative corrections to Einstein gravity, e.g.,

L~ R+ #aPR + #aPRPFP + .- .

For charged black holes (with Ramond-Ramond gauge fields), the
leading correction is unknown.

A precision measurement of certain correlators will give us
information about these corrections. Similar program in the CFT
bootstrap; e.g., [Binder, Chester, Pufu, Wang '19]
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A clear target is the only SO(9) singlet field in this background .

X has scaling dimension A = 28/5 [Sekino & Yoneya '00, Biggs &
Maldacena '23]. The leading a/® correction breaks the scaling
symmetry and gives rise to a non-trivial 1-pt function:

(O/>3 26 2 5
Seff 2 G /\/Ee X(#1R4+#2€ RF +'--+)

<OX> x TA+5 —_ T28/5
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On the matrix side, the operator O, is known [Van Raamsdonk and
Taylor '98] :
O, ~ Tr P'P'P P! 4 T [ X, X))[X0, Xk] PXP' + - - - + fermions

Somewhat complicated but in principle doable.
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On the matrix side, the operator O, is known [Van Raamsdonk and
Taylor '98] :
O, ~ Tr P'P'P P! 4 T [ X, X))[X0, Xk] PXP' + - - - + fermions

Somewhat complicated but in principle doable.

X is also expected to contribute to a generic SO(9) singlet due to

operator mixing, e.g.,
<tI'X2> N#1+#HT14/5+#H’T23/5+#XT28/5+”'

44 /49



More generally, thermal 1-pt functions in black hole backgrounds
probe regions of high curvature, e.g., the black hole singularity
[Grinberg & Maldacena].
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Summary

1. solvable matrix models can also be solved by bootstrap
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Summary

1. solvable matrix models can also be solved by bootstrap

2. for "unsolvable" models like BFSS, bootstrap gives us some
non-trivial bounds. Old results from the matrix side [Polchinski
'99] can be reformulated and improved as a bootstrap result.

3. In principle, we could learn about stringy black holes using the
bootstrap. We are in the process of putting this into practice.
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Future directions |I.

Bootstrapping the thermal entropy, e.g.,

S = A/(4Gp) + corrections.
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Future directions |I.

Bootstrapping the thermal entropy, e.g.,

S = A/(4Gp) + corrections.

Recent progress [Fawzi, Fawzi & Scalet '23] in inputting the KMS
condition into the bootstrap (in the Hamiltonian approach). Uses
a non-linear relaxation of the relative entropy.

Can be applied to large N matrix quantum mechanics [Cho, Sandor,
& Yin, WIP]
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(Z2021)

Transverse-field Ising Model at 8 = 1 [from Fawzi, Fawzi & Scalet].

o0
—H= Z ZiZip1 +gX;
i=—o00
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Future directions Il.

d=0 d=1 d>?2

1-matrix model
¢ = 1 matrix model

1-matrix integral

multi-matrix DO-brane
integral BFSS
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Future directions Il.

d=20 d=1 d>?2

1-matrix model
¢ = 1 matrix model

1-matrix integral 't Hooft model, ..

multi-matrix DO0-brane large N Yang Mills
integral BFSS large N QCD

Already some interesting progress...
[Anderson & Kruczenski '16] [Kazakov & Zheng '22] [Kazakov & Zheng, WIP]

Many other strongly-coupled lattice systems seem possible...
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