Bootstrapping black holes

Henry Lin, Stanford University

February 5, 2025

This talk is based on: HL, 2302.04416 2410.14647 w/ Zechuan Zheng 25??.???? w/ Zechuan Zheng

see also: [Anderson & Kruczenski, 1612.08140], [HL, 2002.08387] [Han, Harnoll, Kruthoff, 2004.10212] [Kazakov & Zheng, 2108.04830] [Cho, Gabai, Sandor, Yin, 2410.04262]

It would be nice to solve the quantum system.

It would be nice to solve the quantum system. This means, e.g., computing correlators like $\frac{1}{7} \operatorname{tr}(e^{-\beta H} \mathcal{O})$ on the LHS.

For certain special black holes, we know explicitly what the quantum system is (large N super Yang-Mills gauge theories)

For certain special black holes, we know explicitly what the quantum system is (large N super Yang-Mills gauge theories)

So why haven't we solved these black holes yet?

The horizon:

The horizon:

• Bekenstein-Hawking entropy = $\frac{A}{4G_N}$

The horizon:

• Bekenstein-Hawking entropy $=\frac{A}{4G_N} \Rightarrow$ need large N.

The **horizon**:

- Bekenstein-Hawking entropy $=\frac{A}{4G_N} \Rightarrow$ need large N.
- Particle falling towards the horizon p ~ e^{2πt/β} ⇒ maximal chaos [Shenker & Stanford], [Maldacena, Shenker, Stanford], ···, [HL Maldacena Zhao], ···

The **horizon**:

- Bekenstein-Hawking entropy $=\frac{A}{4G_N} \Rightarrow$ need large N.
- Particle falling towards the horizon p ~ e^{2πt/β} ⇒ maximal chaos [Shenker & Stanford], [Maldacena, Shenker, Stanford], ···, [HL Maldacena Zhao], ··· ⇒ strong coupling

The **horizon**:

- Bekenstein-Hawking entropy $=\frac{A}{4G_N} \Rightarrow$ need large N.
- Particle falling towards the horizon p ~ e^{2πt/β} ⇒ maximal chaos [Shenker & Stanford], [Maldacena, Shenker, Stanford], ···, [HL Maldacena Zhao], ··· ⇒ strong coupling

These features make solving the dual quantum mechanics hard.

- numerics is hard at large N
- analytic methods are sparse due to strong coupling

Monte Carlo

 \triangleright physics simplifies at large N but the computation gets harder

- \triangleright physics simplifies at large *N* but the computation gets harder
- ▷ sign problem Θ

- \triangleright physics simplifies at large *N* but the computation gets harder
- ▷ sign problem Θ
- \triangleright metastability: some problems ill-defined at finite N

- \triangleright physics simplifies at large *N* but the computation gets harder
- ▷ sign problem Θ
- \triangleright metastability: some problems ill-defined at finite N
- Large N Bootstrap
 - ▷ works $N = \infty$; gives rigorous bounds
 - ▷ no sign problem 🙂

- \triangleright physics simplifies at large *N* but the computation gets harder
- ▷ sign problem Θ
- \triangleright metastability: some problems ill-defined at finite N
- Large N Bootstrap
 - ▷ works $N = \infty$; gives rigorous bounds
 - ▷ no sign problem 🙂
 - $\,\,\,
 m \circ\,\,$ for multi-matrix models, exponentially many constraints $\,\,\,\,\,$

- \triangleright physics simplifies at large *N* but the computation gets harder
- ▷ sign problem Θ
- \triangleright metastability: some problems ill-defined at finite N
- Large N Bootstrap
 - ▷ works $N = \infty$; gives rigorous bounds
 - ▷ no sign problem 🙂
 - $\,\,\,
 m \circ\,\,$ for multi-matrix models, exponentially many constraints $\,\,\,\,\,$

Bootstrap: a timeline

- 1. CFT bootstrap [Ferrara '73], [Polyakov '74], [Belavin, Polyakov, Zamolodchikov '84]
- 2. Lattice Yang Mills bootstrap [Anderson & Kruczenski '16, Kazakov & Zheng '22]
- 3. Matrix bootstrap [HL '20]
- 4. Quantum mechanical bootstrap [Han, Hartnoll, Kruthoff '20]
- 5. Virial bound [Polchinski '99]
- 6. BFSS [today]

Outline

	d = 0 (stat mech)	d = 1
solvable	1-matrix integral	1-matrix quantum mech $c = 1$ matrix model
unsolvable	multi-matrix integral	D0-brane quantum mech BFSS matrix theory

D0-brane theory = simplest known system dual to a certain black hole = dimensional reduction of $\mathcal{N}=4$ SYM to 0+1d.

Outline

1		d = 0 (stat mech)	d = 1
<i>#</i> matrices	solvable	1-matrix integral	1-matrix quantum mech $c = 1$ matrix model
	unsolvable	multi-matrix integral	D0-brane quantum mech BFSS matrix theory

D0-brane theory = simplest known system dual to a certain black hole = dimensional reduction of $\mathcal{N}=4$ SYM to 0+1d.

Outline

	d = 0 (stat mech)	d = 1
solvable	1-matrix integral	1-matrix quantum mech $c = 1$ matrix model
unsolvable	multi-matrix integral	D0-brane quantum mech BFSS matrix theory

D0-brane theory = simplest known system dual to a certain black hole = dimensional reduction of $\mathcal{N}=4$ SYM to 0+1d.

1-Matrix model

Probability distribution over $N \times N$ Hermitian matrix M_{ij} :

$$p(M) = \frac{1}{\mathcal{Z}} e^{-N^2 \operatorname{tr} V(M)}, \quad V(M) = \frac{1}{2}M^2 + \frac{g}{4}M^4$$

1-Matrix model

Probability distribution over $N \times N$ Hermitian matrix M_{ij} :

$$p(M) = \frac{1}{Z} e^{-N^2 \operatorname{tr} V(M)}, \quad V(M) = \frac{1}{2}M^2 + \frac{g}{4}M^4$$

Goal: compute moments $\langle \operatorname{tr} M^k \rangle$ as a function of *g*.

$$\langle \operatorname{tr} M^2 \rangle = \lim_{N \to \infty} \frac{1}{\mathcal{Z}} \int \mathrm{d} M \, e^{-N^2 \operatorname{tr} V(M)} \operatorname{tr} M^2$$

Bootstrapping matrices

- 1. Guess the value of some simple correlator, e.g. $\langle {
 m tr}\, {\it M}^2
 angle$
- 2. Feed it through the loop eqns to generate more correlators
- 3. Demand that $\langle \operatorname{tr} \mathcal{O}^{\dagger} \mathcal{O} \rangle \geq 0$.

Loop (Schwinger-Dyson) equations

- relates lower-pt correlators to higher-pt correlators
- uses large N factorization ('t Hooft)

$$\langle \operatorname{tr} \mathcal{M}^{k} \rangle = \sum_{\ell=0}^{k-1} \langle \operatorname{tr} \mathcal{M}^{\ell} \rangle \langle \operatorname{tr} \mathcal{M}^{k-\ell-2} \rangle + g \langle \operatorname{tr} \mathcal{M}^{k+2} \rangle$$

Naive algorithm: starting with some guess for $\langle \operatorname{tr} M^2 \rangle$, generate moments $\langle \operatorname{tr} M^4 \rangle$, $\langle \operatorname{tr} M^6 \rangle$, $\langle \operatorname{tr} M^8 \rangle$,

Naive algorithm: starting with some guess for $\langle \operatorname{tr} M^2 \rangle$, generate moments $\langle \operatorname{tr} M^4 \rangle$, $\langle \operatorname{tr} M^6 \rangle$, $\langle \operatorname{tr} M^8 \rangle$,

If any even moment is negative, rule out the guess.

Naive algorithm: starting with some guess for $\langle \operatorname{tr} M^2 \rangle$, generate moments $\langle \operatorname{tr} M^4 \rangle$, $\langle \operatorname{tr} M^6 \rangle$, $\langle \operatorname{tr} M^8 \rangle$,

If any even moment is negative, rule out the guess.

More systematically, we can consider a general polynomial in the matrix M:

$$\mathcal{O} = \sum \alpha_k \mathcal{M}^k \Rightarrow \operatorname{tr} \mathcal{O}^{\dagger} \mathcal{O} \ge 0.$$

This implies that $\alpha_i^* \mathcal{M}_{ij} \alpha_j \ge 0$ for all coefficients α , where we have assembled all the correlators into a big matrix $\mathcal{M}_{ij} = \langle \operatorname{tr} \mathcal{M}^{i+j} \rangle$:

$$\mathcal{M} = \begin{pmatrix} 1 & \langle \operatorname{tr} M \rangle & \langle \operatorname{tr} M^2 \rangle \\ \langle \operatorname{tr} M \rangle & \langle \operatorname{tr} M^2 \rangle & \langle \operatorname{tr} M^3 \rangle \\ \langle \operatorname{tr} M^2 \rangle & \langle \operatorname{tr} M^3 \rangle & \langle \operatorname{tr} M^4 \rangle \end{pmatrix} \succeq 0$$

Here $\mathcal{M}_{ij} = \langle \operatorname{tr} M^{i+j} \rangle$.

Review of the matrix bootstrap

As the size of $\ensuremath{\mathcal{M}}$ increases, rapid convergence to the exact solution.

Metastability

To address the issue of metastability, consider g < 0. The potential is unbounded from below:

In the large N limit, tunneling is suppressed.
Metastability

For $-g_* < g < 0$ the model still makes sense at $\mathit{N} = \infty$

	d = 0 (stat mech)	d = 1
solvable	1-matrix integral	1-matrix quantum mech $c = 1$ matrix model
unsolvable	multi-matrix integral	D0-brane quantum mech BFSS matrix theory

Multi-matrix integrals

Main challenge: exponentially many correlators for a given length *L*, e.g., for L = 7: $\langle \text{Tr } ABABBBA \rangle, \langle \text{Tr } BBBABAB \rangle, \cdots$

Also more loop equations and more positivity constraints:

$$\mathcal{M} = \begin{pmatrix} 1 & \operatorname{Tr} A & \operatorname{Tr} B & \cdots \\ \operatorname{Tr} A & \operatorname{Tr} A^2 & \operatorname{Tr} AB & \\ \operatorname{Tr} B & \operatorname{Tr} BA & \operatorname{Tr} B^2 & \\ \vdots & & \ddots \end{pmatrix}$$

Despite these challenges, the bootstrap gives strong results for multi-matrix integrals [HL '20], e.g.,

Despite these challenges, the bootstrap gives strong results for multi-matrix integrals [HL '20], e.g.,

$$\begin{split} \mathcal{Z} &= \int dA \, dB \, e^{-N^2 \, \mathrm{tr} \, V(A,B)} \\ \mathcal{V}(X,Y) &= -\frac{1}{2} [A,B]^2 + \mathcal{V}(A) + \mathcal{V}(B), \\ \mathcal{V}(X) &= \frac{1}{2} X^2 + \frac{1}{4} X^4 \end{split}$$

Despite these challenges, the bootstrap gives strong results for multi-matrix integrals [HL '20], e.g.,

$$\begin{split} \mathcal{Z} &= \int \mathrm{d}A \; \mathrm{d}B \, e^{-N^2 \operatorname{tr} V(A,B)} \\ V(X,Y) &= -\frac{1}{2} [A,B]^2 + v(A) + v(B), \\ v(X) &= \frac{1}{2} X^2 + \frac{1}{4} X^4 \end{split}$$

Using non-linear relaxation, one can convert it to a standard semi-definite programming problem [Kazakov & Zheng '22].

$$\begin{array}{l} 0.4217836 \leq \left< \operatorname{tr} A^2 \right> \leq 0.4217847 \\ 0.3333413 \leq \left< \operatorname{tr} A^4 \right> \leq 0.3333421 \end{array}$$

 ~ 6 decimal digits on a laptop!

	d = 0 (stat mech)	d = 1
solvable	1-matrix integral	1-matrix quantum mech $c = 1$ matrix model
unsolvable	multi-matrix integral	D0-brane quantum mech BFSS matrix theory

1-matrix QM

 N^2 non-relativistic particles arranged in a matrix.

$$\mathbf{i}[X_{ij}, P_{kl}] = \delta_{il}\delta_{jk}.$$

Hamiltonian:

$$H = N\left(\frac{1}{2}\operatorname{Tr} P^2 + \frac{m^2}{2}\operatorname{Tr} X^2 + \frac{g}{4}\operatorname{Tr} X^4\right)$$

U(N) gauge constraint:

$$J_{ik} = i(X_{ij}P_{jk} - P_{ij}X_{jk}) + N\delta_{ik} = 0$$

[for a review, see Klebanov hep-th/9108019] [Brezin, Itzykson, Parisi, Zuber, Douglas, Klebanov, Kutasov, Maldacena, Martinec, Takayangi, Toumbas, Verlinde, · · ·]

1-matrix QM

 N^2 non-relativistic particles arranged in a matrix.

$$i[X_{ij}, P_{kl}] = \delta_{il}\delta_{jk}.$$

Hamiltonian:

$$H = N\left(\frac{1}{2}\operatorname{Tr} P^2 + \frac{m^2}{2}\operatorname{Tr} X^2 + \frac{g}{4}\operatorname{Tr} X^4\right).$$

U(N) gauge constraint:

$$J_{ik} = i(X_{ij}P_{jk} - P_{ij}X_{jk}) + N\delta_{ik} = 0$$

known as c = 1 or $\hat{c} = 1$ matrix model¹. [for a review, see Klebanov hep-th/9108019] [Brezin, Itzykson, Parisi, Zuber, Douglas, Klebanov, Kutasov, Maldacena, Martinec, Takayangi, Toumbas, Verlinde, \cdots]

¹in the double scaling limit

1. Replace loop eqns with O' = [O, H]. In energy eigenstates $\langle E| O' | E \rangle = \langle E| O| E \rangle E - E \langle E| O| E \rangle = 0.$

1. Replace loop eqns with O' = [O, H]. In energy eigenstates $\langle E| O' | E \rangle = \langle E| O| E \rangle E - E \langle E| O| E \rangle = 0.$

example: $0 = \langle [\operatorname{tr} XP, H] \rangle = -\operatorname{tr} P^2 + \operatorname{tr} X^2 + g \operatorname{tr} X^4$

 Positivity of measure replaced w/ Hilbert space positivity (fermions ^(C))

- 1. Replace loop eqns with O' = [O, H]. In energy eigenstates $\langle E| O' | E \rangle = \langle E| O| E \rangle E E \langle E| O| E \rangle = 0.$
- 2. Positivity of measure replaced w/ Hilbert space positivity (fermions \bigcirc) $\langle E | \operatorname{tr} \mathcal{O}^{\dagger} \mathcal{O} | E \rangle \geq 0 \Rightarrow \mathcal{M}_{ij} = \langle E | \operatorname{tr} \mathcal{O}_{i}^{\dagger} \mathcal{O}_{j} | E \rangle \geq 0$

3. Optional: ground state bootstrap positivity: $\langle O^{\dagger}[H, O] \rangle_{gs} = \langle O^{\dagger}HO \rangle_{gs} - E_{gs} \langle O^{\dagger}O \rangle_{gs} \ge 0$

- 1. Replace loop eqns with O' = [O, H]. In energy eigenstates $\langle E| O' | E \rangle = \langle E| O| E \rangle E E \langle E| O| E \rangle = 0.$
- Positivity of measure replaced w/ Hilbert space positivity (fermions ^(C))

$$\langle E | \operatorname{tr} \mathcal{O}^{\dagger} \mathcal{O} | E \rangle \ge 0 \Rightarrow \mathcal{M}_{ij} = \langle E | \operatorname{tr} \mathcal{O}_{i}^{\dagger} \mathcal{O}_{j} | E \rangle \ge 0$$

3. Optional: ground state bootstrap positivity: $\mathcal{N}_{ij} = \langle O_i^{\dagger}[H, O_j] \rangle_{gs} \succeq 0$

Ground state bootstrap

+ denotes the exact solution for g = 1

Ground state bootstrap

	d = 0 (stat mech)	d = 1
solvable	1-matrix integral	1-matrix quantum mech $c = 1$ matrix model
unsolvable	multi-matrix integral	D0-brane quantum mech BFSS matrix theory

Hilbert space: 9 bosonic matrices and 16 fermionic matrices. Transform as a vector and spinor of SO(9).

$$H = \frac{1}{2} \operatorname{Tr} \left(g^2 P_I^2 - \frac{1}{2g^2} \left[X_I, X_J \right]^2 - \psi_\alpha \gamma_{\alpha\beta}^I \left[X_I, \psi_\beta \right] \right)$$

[Banks, Fischler, Shenker, Susskind '97]

Most of what we know on the matrix side is due to heroic Monte Carlo simulations [Kabat *et al.*, Anagnostopoulos *et al.*, Hanada *et al.*, ..., Berkowitz *et al.*, Pateloudis *et al.*]

't Hooft limit: $N \to \infty$ holding fixed $\lambda \beta^3 = g^2 N \beta^3$.

't Hooft limit: $N \to \infty$ holding fixed $\lambda \beta^3 = g^2 N \beta^3$. In the strongly coupled regime $\lambda \beta^3 \gg 1$, dual to a metastable black hole in Type IIA [Itzhaki, Maldacena, Sonneschein, Yankielowicz]:

$$\frac{\mathrm{d}s^2}{\alpha'} = -f(r)r_c^2\,\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)r_c^2} + \left(\frac{r}{r_c}\right)^{-3/2}\mathrm{d}\Omega_8^2$$

't Hooft limit: $N \to \infty$ holding fixed $\lambda \beta^3 = g^2 N \beta^3$. In the strongly coupled regime $\lambda \beta^3 \gg 1$, dual to a metastable black hole in Type IIA [Itzhaki, Maldacena, Sonneschein, Yankielowicz]:

$$\frac{\mathrm{d}s^2}{\alpha'} = -f(r)r_c^2\,\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)r_c^2} + \left(\frac{r}{r_c}\right)^{-3/2}\mathrm{d}\Omega_8^2$$

 S_8 shrinks with r. At $r \sim \lambda^{1/3} \Rightarrow$ string scale curvature.

At $E/N^2 \gtrsim \lambda^{1/3}$ geometry is nowhere reliable.

Kinematic constraints

Less trivial example:

$$\mathcal{M}_{\alpha\beta\gamma\eta} = \left\langle \mathrm{tr} \left(\psi^{\alpha} \psi^{\beta} \psi^{\delta} \psi^{\eta} \right) \right\rangle$$

Kinematic constraints

Less trivial example:

$$\mathcal{M}_{\alpha\beta\gamma\eta} = \left\langle \mathrm{tr} \Big(\psi^{\alpha} \psi^{\beta} \psi^{\delta} \psi^{\eta} \Big) \right\rangle$$

Viewed as a matrix in the $\{\alpha, \beta\}$ and $\{\gamma, \eta\}$ indices, positivity requires $\mathcal{M} \succeq 0$.

Kinematic constraints

Less trivial example:

$$\mathcal{M}_{\alpha\beta\gamma\eta} = \left\langle \mathrm{tr} \left(\psi^{\alpha} \psi^{\beta} \psi^{\delta} \psi^{\eta} \right) \right\rangle$$

Using the "addition of SO(9) angular momentum" rules:

$$\begin{aligned} (\mathbf{16})^4 &= (\mathbf{16}\times\mathbf{16})^2 = (\mathbf{1}+\mathbf{9}+\mathbf{36}+\mathbf{84}+\mathbf{128})^2 \\ &= 5(\mathbf{1}) + \mathsf{non-singlets} \end{aligned}$$

Thus group theory determines this $16^4 = 65536$ to just 5 unknowns.

$$\mathcal{M}_{\alpha\beta\gamma\eta} = \delta_{\alpha\beta}\delta_{\eta\epsilon}\mathbf{a_{1}} + \gamma_{\alpha\beta}^{I}\gamma_{\eta\epsilon}^{I}\mathbf{a_{9}} + \gamma_{\alpha\beta}^{IJ}\gamma_{\eta\epsilon}^{IJ}\mathbf{a_{36}} + \gamma_{\alpha\beta}^{IJK}\gamma_{\eta\epsilon}^{IJK}\mathbf{a_{84}} + \gamma_{\alpha\beta}^{IJKL}\gamma_{\eta\epsilon}^{IJKL}\mathbf{a_{128}}$$

Cyclicity and the fermion anti-commutation relations cuts this further to just 2 unknowns.

Expand *s*-channel block in terms of *t*-channel blocks:

 \Rightarrow 6j symbol. At higher levels, need higher-pt crossing kernels.

Kinematics determined $\mathcal{M}_{\alpha\beta\gamma\eta}$ in terms of 2 unknowns. We still need to impose positivity of a large matrix $\mathcal{M}_{\alpha\beta,\gamma\eta}$. By decomposing $\psi_{\alpha}\psi_{\beta}$ into irreps, one can easily diagonalize \mathcal{M} .

Kinematics determined $\mathcal{M}_{\alpha\beta\gamma\eta}$ in terms of 2 unknowns. We still need to impose positivity of a large matrix $\mathcal{M}_{\alpha\beta,\gamma\eta}$. By decomposing $\psi_{\alpha}\psi_{\beta}$ into irreps, one can easily diagonalize \mathcal{M} .

The upshot is that by leveraging the symmetries of the model, the D0-brane bootstrap is practical. 😳

 $Cross + is the Monte Carlo result^* of [Berkowitz et al.'16].$

The lower bound on $\langle \operatorname{tr} X^2 X^2 \rangle$ was derived (up to some factors) in [Polchinski '99]. It can also be improved to finite energy [HL '23].

	method	$\langle \operatorname{tr} X^2 angle$
_	Monte Carlo [Pateloudis <i>et al.</i> '22]	$pprox 0.37 \pm 0.05$
	primitive bootstrap [HL '23]	≥ 0.1875
	bootstrap level 6	≥ 0.294
	bootstrap level 7	≥ 0.331
	bootstrap level 8 ⁺	≥ 0.3401
	bootstrap level 9	≥ 0.3451

	method	$\langle \operatorname{tr} X^2 angle$
_	Monte Carlo [Pateloudis <i>et al.</i> '22]	$\approx 0.37 \pm 0.05$
	primitive bootstrap [HL '23]	≥ 0.1875
	bootstrap level 6	≥ 0.294
	bootstrap level 7	≥ 0.331
	bootstrap level 8 ⁺	≥ 0.3401
	bootstrap level 9	≥ 0.3451

 $\sim 90\%$ of the MC value with just level 7:

19 variable SDP, ~ 170 EoMs, matrices of size $\lesssim 20 \times 20.$

Metastability in Monte Carlo

Monte Carlo results [Pateloudis et al. '22]

Toy supermembrane problem

In a simpler toy problem, we see a similar-looking peninsula at low levels, but an island at higher levels.

I have presented some evidence that the bootstrap could yield precision data on some correlators like $\langle \operatorname{tr} X^2 \rangle$.

A high precision measurement of these and/or related correlators could give the *leading* corrections to the semiclassical black hole background. [A nice candidate is $\langle O_{\rm BPS} \rangle \sim T^{\Delta+\delta}$.]

In principle, we could use this to constrain unknown $O(\alpha'^3)$ corrections to the IIa effective action. [See Hanada, Berkowitz, Pateloudis, ... for similar discussions involving BH thermodynamics. Similar in spirit to the CFT bootstrap program by e.g. Binder, Chester, Pufu, Wang, ...]

Future directions

- Islands?
- Constraints on the bound state?
- Finite energy/temperature
- Large N lattice systems, especially those with sign problems? [Anderson & Kruczenski, Kazakov & Zheng, ...]
Future directions

- Islands?
- Constraints on the bound state?
- Finite energy/temperature
- Large N lattice systems, especially those with sign problems? [Anderson & Kruczenski, Kazakov & Zheng, ...]
- BMN model, other matrix models?
- IKKT???

Future directions

- Islands?
- Constraints on the bound state?
- Finite energy/temperature
- Large N lattice systems, especially those with sign problems? [Anderson & Kruczenski, Kazakov & Zheng, ...]
- BMN model, other matrix models?
- IKKT???

Thanks!

Sign problem?

[WIP w/ Gauri Batra and Haifeng Tang]

Motivated by the agreement with the bootstrap (at least $\ell \leq 9$), we wish to study the sign problem. Integrating out the fermions,

$$\int D\psi Dc \, e^{-S} = \Pr(A, X') \to |\Pr(A, X')|$$

Sign problem?

[WIP w/ Gauri Batra and Haifeng Tang]

Motivated by the agreement with the bootstrap (at least $\ell \leq 9$), we wish to study the sign problem. Integrating out the fermions,

$$\int D\psi Dc \, e^{-S} = \operatorname{Pf}(A, X') \to |\operatorname{Pf}(A, X')|$$

Calculate in perturbation theory: $|\mathrm{Pf}(A,X^l)|^{2n} = \mathrm{Pf}(A,X^l)^n \mathrm{Pf}(A^*,X^l)^n$

High temperature expansion \rightarrow reduce to a matrix integral + massive modes. So far: agreement at 1-loop...

I have presented some evidence that the bootstrap could yield precision data on some correlators like $\langle \operatorname{tr} X^2 \rangle$.

In the remainder of the talk, I will comment on: What could we hope to learn by measuring $\langle \operatorname{tr} X^2 \rangle$ precisely?

Suppose that one day we have high precision measurements of 1-pt functions like $\langle \operatorname{tr} X^n \rangle$. What can we learn?

The semiclassical BH geometry and its stringy corrections

Suppose that one day we have high precision measurements of 1-pt functions like $\langle \operatorname{tr} X^n \rangle$. What can we learn?

The semiclassical BH geometry and its stringy corrections

In principle, this includes properties that are currently inaccessible by worldsheet methods.

[See Hanada *et al.*, Berkowitz *et al.*, Pateloudis, *et al.*for similar discussions involving the BH thermodynamics.]

In principle, a theory of quantum gravity should predict the higher-derivative corrections to Einstein gravity, e.g.,

$$\mathcal{L} \sim R + \# \alpha'^3 R^4 + \# \alpha'^3 R^3 F^2 + \cdots$$

For charged black holes (with Ramond-Ramond gauge fields), the *leading* correction is unknown.

A precision measurement of certain correlators will give us information about these corrections. Similar program in the CFT bootstrap; e.g., [Binder, Chester, Pufu, Wang '19]

A clear target is the only SO(9) singlet field in this background χ .

 χ has scaling dimension $\Delta=28/5$ [Sekino & Yoneya '00, Biggs & Maldacena '23]. The leading α'^3 correction breaks the scaling symmetry and gives rise to a non-trivial 1-pt function:

$$S_{\text{eff}} \supset \frac{(\alpha')^3}{G_N} \int \sqrt{g} e^{-2\phi} \chi \left(\#_1 R^4 + \#_2 e^{2\phi} R^3 F^2 + \dots + \right)$$
$$\langle \mathcal{O}_{\chi} \rangle \propto T^{\Delta + \delta} = T^{28/5}$$

On the matrix side, the operator \mathcal{O}_{χ} is known [Van Raamsdonk and Taylor '98] :

 $\mathcal{O}_{\chi} \sim \operatorname{Tr} P^{I} P^{J} P^{J} P^{J} + \operatorname{Tr}[X_{I}, X_{J}][X_{J}, X_{K}] P^{K} P^{J} + \dots + \text{fermions}$

Somewhat complicated but in principle doable.

On the matrix side, the operator \mathcal{O}_{χ} is known [Van Raamsdonk and Taylor '98] :

 $\mathcal{O}_{\chi} \sim \operatorname{Tr} \mathcal{P}^{I} \mathcal{P}^{J} \mathcal{P}^{J} + \operatorname{Tr}[X_{I}, X_{J}][X_{J}, X_{K}] \mathcal{P}^{K} \mathcal{P}^{J} + \dots + \text{fermions}$

Somewhat complicated but in principle doable.

 χ is also expected to contribute to a generic SO(9) singlet due to operator mixing, e.g.,

 $\langle \operatorname{tr} X^2 \rangle \sim \#_1 + \#_H T^{14/5} + \#_H T^{23/5} + \#_{\chi} T^{28/5} + \cdots$

More generally, thermal 1-pt functions in black hole backgrounds probe regions of high curvature, e.g., the black hole singularity [Grinberg & Maldacena].

1. solvable matrix models can also be solved by bootstrap

Summary

- 1. solvable matrix models can also be solved by bootstrap
- for "unsolvable" models like BFSS, bootstrap gives us some non-trivial bounds. Old results from the matrix side [Polchinski '99] can be reformulated and improved as a bootstrap result.

Summary

- 1. solvable matrix models can also be solved by bootstrap
- for "unsolvable" models like BFSS, bootstrap gives us some non-trivial bounds. Old results from the matrix side [Polchinski '99] can be reformulated and improved as a bootstrap result.
- 3. In principle, we could learn about stringy black holes using the bootstrap. We are in the process of putting this into practice.

Future directions I.

Bootstrapping the thermal entropy, e.g.,

 $S = A/(4G_N) +$ corrections.

Future directions I.

Bootstrapping the thermal entropy, e.g.,

 $S = A/(4G_N) +$ corrections.

Recent progress [Fawzi, Fawzi & Scalet '23] in inputting the KMS condition into the bootstrap (in the Hamiltonian approach). Uses a non-linear relaxation of the relative entropy.

Can be applied to large N matrix quantum mechanics [Cho, Sandor, & Yin, WIP]

Transverse-field Ising Model at $\beta = 1$ [from Fawzi, Fawzi & Scalet].

$$-H = \sum_{i=-\infty}^{\infty} Z_i Z_{i+1} + g X_i$$

Future directions II.

_	d = 0	d = 1	$d \geq 2$
	1-matrix integral	1-matrix model $c = 1$ matrix model	
	multi-matrix integral	D0-brane BFSS	

Future directions II.

 d = 0	d = 1	$d \ge 2$
1-matrix integral	1-matrix model $c = 1$ matrix model	't Hooft model,
multi-matrix integral	D0-brane BFSS	large N Yang Mills large N QCD

Already some interesting progress...

[Anderson & Kruczenski '16] [Kazakov & Zheng '22] [Kazakov & Zheng, WIP]

Many other strongly-coupled lattice systems seem possible...