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Black holes, as seen from the outside, are described by an ordinary
quantum system.

=

It would be nice to solve the quantum system. This means, e.g.,
computing correlators like 1

Z tr
󰀃
e−βHO

󰀄
on the LHS.
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For certain special black holes, we know explicitly what the
quantum system is (large N super Yang-Mills gauge theories)
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For certain special black holes, we know explicitly what the
quantum system is (large N super Yang-Mills gauge theories)

So why haven't we solved these black holes yet?
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Why bootstrap?

The horizon:
◮ Bekenstein-Hawking entropy = A

4GN
⇒ need large N.

◮ Particle falling towards the horizon p ∼ e2πt/β ⇒ maximal
chaos [Shenker & Stanford], [Maldacena, Shenker, Stanford], · · · , [HL
Maldacena Zhao], · · · ⇒ strong coupling

These features make solving the dual quantum mechanics hard.
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Why bootstrap?

numerics analytic

◮ numerics is hard at large N
◮ analytic methods are sparse due to strong coupling
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Bootstrap: a timeline

1. 2. 3. 4.

5. 6.
‘84 2016 2020

‘99

today

1. CFT bootstrap [Ferrara '73], [Polyakov '74], [Belavin, Polyakov,
Zamolodchikov '84]

2. Lattice Yang Mills bootstrap [Anderson & Kruczenski '16, Kazakov &
Zheng '22]

3. Matrix bootstrap [HL '20]
4. Quantum mechanical bootstrap [Han, Hartnoll, Kruthoff '20]
5. Virial bound [Polchinski '99]
6. BFSS [today]
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Outline

d = 0 (stat mech) d = 1

solvable 1-matrix integral 1-matrix quantum mech
c = 1 matrix model

unsolvable multi-matrix integral D0-brane quantum mech
BFSS matrix theory

D0-brane theory = simplest known system dual to a certain black
hole = dimensional reduction of N = 4 SYM to 0+1d.
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1-Matrix model

Probability distribution over N × N Hermitian matrix Mij:

p(M) =
1

Z e−N2 tr V(M), V(M) =
1

2
M2 +

g
4

M4
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1-Matrix model

Probability distribution over N × N Hermitian matrix Mij:

p(M) =
1

Z e−N2 tr V(M), V(M) =
1

2
M2 +

g
4

M4

Goal: compute moments
󰀍
tr Mk󰀎 as a function of g.

󰀍
tr M2

󰀎
= lim

N→∞

1

Z

󰁝
dM e−N2 tr V(M) tr M2

10 / 49



Bootstrapping matrices

1. Guess the value of some simple correlator, e.g.
󰀍
tr M2

󰀎

2. Feed it through the loop eqns to generate more correlators
3. Demand that

󰀍
trO†O

󰀎
≥ 0.
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Loop (Schwinger-Dyson) equations

= +

◮ relates lower-pt correlators to higher-pt correlators
◮ uses large N factorization ('t Hooft)

〈tr Mk〉 =
k−1󰁛

ℓ=0

〈tr Mℓ〉〈tr Mk−ℓ−2〉+ g 〈tr Mk+2〉
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Positivity

Naive algorithm: starting with some guess for
󰀍
tr M2

󰀎
, generate

moments
󰀍
tr M4

󰀎
,
󰀍
tr M6

󰀎
,
󰀍
tr M8

󰀎
, · · · .
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Positivity

More systematically, we can consider a general polynomial in the
matrix M:

O =
󰁛

αkMk ⇒ trO†O ≥ 0.

This implies that α∗
i Mijαj ≥ 0 for all coefficients α, where we have

assembled all the correlators into a big matrix Mij =
󰀍
tr Mi+j󰀎:

M =

󰀳

󰁃
1 〈tr M〉

󰀍
tr M2

󰀎

〈tr M〉
󰀍
tr M2

󰀎 󰀍
tr M3

󰀎
󰀍
tr M2

󰀎 󰀍
tr M3

󰀎 󰀍
tr M4

󰀎

󰀴

󰁄 ≽ 0

Here Mij =
󰀍
tr Mi+j󰀎.
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Review of the matrix bootstrap
��
�
�

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

�

��
�
�

1.00 1.02 1.04 1.06 1.08 1.10
0.48

0.49

0.50

0.51

0.52

0.53

�

As the size of M increases, rapid convergence to the exact
solution.

exact soln
M4×4 ≽ 0

M5×5 ≽ 0

M6×6 ≽ 0
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Metastability

To address the issue of metastability, consider g < 0. The
potential is unbounded from below:

M

V(M)

In the large N limit, tunneling is suppressed.
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Metastability
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For −g∗ < g < 0 the model still makes sense at N = ∞
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d = 0 (stat mech) d = 1

solvable 1-matrix integral 1-matrix quantum mech
c = 1 matrix model

unsolvable multi-matrix integral D0-brane quantum mech
BFSS matrix theory
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Multi-matrix integrals

Main challenge: exponentially many correlators for a given length
L, e.g., for L = 7:

〈Tr ABABBBA〉 , 〈Tr BBBABAB〉 , · · ·

Also more loop equations and more positivity constraints:

M =

󰀳

󰁅󰁅󰁅󰁃

1 Tr A Tr B · · ·
Tr A Tr A2 Tr AB
Tr B Tr BA Tr B2

... . . .

󰀴

󰁆󰁆󰁆󰁄
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Despite these challenges, the bootstrap gives strong results for
multi-matrix integrals [HL '20], e.g.,
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Despite these challenges, the bootstrap gives strong results for
multi-matrix integrals [HL '20], e.g.,

Z =

󰁝
dA dB e−N2 tr V(A,B)

V(X,Y) = −1

2
[A,B]2 + v(A) + v(B),

v(X) = 1

2
X2 +

1

4
X4
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Despite these challenges, the bootstrap gives strong results for
multi-matrix integrals [HL '20], e.g.,

Z =

󰁝
dA dB e−N2 tr V(A,B)

V(X,Y) = −1

2
[A,B]2 + v(A) + v(B),

v(X) = 1

2
X2 +

1

4
X4

Using non-linear relaxation, one can convert it to a standard
semi-definite programming problem [Kazakov & Zheng '22].

0.4217836 ≤
󰀍
tr A2

󰀎
≤ 0.4217847

0.3333413 ≤
󰀍
tr A4

󰀎
≤ 0.3333421

∼ 6 decimal digits on a laptop!
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1-matrix QM

N2 non-relativistic particles arranged in a matrix.

i[Xij,Pkl] = δilδjk.

Hamiltonian:
H = N

󰀕
1

2
Tr P2 +

m2

2
Tr X2 +

g
4

Tr X4

󰀖
.

U(N) gauge constraint:
Jik = i(XijPjk − PijXjk) + Nδik = 0

[for a review, see Klebanov hep-th/9108019] [Brezin, Itzykson, Parisi, Zuber,
Douglas, Klebanov, Kutasov, Maldacena, Martinec, Takayangi, Toumbas,
Verlinde, · · · ]
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1-matrix QM

N2 non-relativistic particles arranged in a matrix.

i[Xij,Pkl] = δilδjk.

Hamiltonian:
H = N

󰀕
1

2
Tr P2 +

m2

2
Tr X2 +

g
4

Tr X4

󰀖
.

U(N) gauge constraint:
Jik = i(XijPjk − PijXjk) + Nδik = 0

known as c = 1 or ĉ = 1 matrix model1.
[for a review, see Klebanov hep-th/9108019] [Brezin, Itzykson, Parisi, Zuber,
Douglas, Klebanov, Kutasov, Maldacena, Martinec, Takayangi, Toumbas,
Verlinde, · · · ]

1in the double scaling limit
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O′ = [O,H]. In energy eigenstates
〈E|O′ |E〉 = 〈E|O|E〉E − E 〈E|O|E〉 = 0.
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O′ = [O,H]. In energy eigenstates
〈E|O′ |E〉 = 〈E|O|E〉E − E 〈E|O|E〉 = 0.

example: 0 = 〈[tr XP,H]〉 = − tr P2 + tr X2 + g tr X4

2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ☺)
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〈E|O′ |E〉 = 〈E|O|E〉E − E 〈E|O|E〉 = 0.

2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ☺)

〈E| trO†O |E〉 ≥ 0 ⇒ Mij = 〈E| trO†
i Oj |E〉 ≥ 0

3. Optional: ground state bootstrap positivity:
〈O†[H,O]〉gs = 〈O†HO〉gs − Egs〈O†O〉gs ≥ 0
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O′ = [O,H]. In energy eigenstates
〈E|O′ |E〉 = 〈E|O|E〉E − E 〈E|O|E〉 = 0.

2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ☺)

〈E| trO†O |E〉 ≥ 0 ⇒ Mij = 〈E| trO†
i Oj |E〉 ≥ 0

3. Optional: ground state bootstrap positivity:
Nij = 〈O†

i [H,Oj]〉gs ≽ 0
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Ground state bootstrap

+ denotes the exact solution for g = 1
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Ground state bootstrap

+ denotes the exact solution for g = 1.
∼ 6 digit precision on a laptop.
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d = 0 (stat mech) d = 1

solvable 1-matrix integral 1-matrix quantum mech
c = 1 matrix model

unsolvable multi-matrix integral D0-brane quantum mech
BFSS matrix theory
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D0-brane quantum mechanics

Hilbert space: 9 bosonic matrices and 16 fermionic matrices.
Transform as a vector and spinor of SO(9).

H =
1

2
Tr

󰀕
g2P2

I −
1

2g2 [XI,XJ]
2 − ψαγ

I
αβ [XI,ψβ ]

󰀖

[Banks, Fischler, Shenker, Susskind '97]
Most of what we know on the matrix side is due to heroic Monte
Carlo simulations [Kabat et al., Anagnostopoulos et al., Hanada et al., …,
Berkowitz et al., Pateloudis et al.]
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D0-brane quantum mechanics

't Hooft limit: N → ∞ holding fixed λβ3 = g2Nβ3.
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D0-brane quantum mechanics

't Hooft limit: N → ∞ holding fixed λβ3 = g2Nβ3.
In the strongly coupled regime λβ3 ≫ 1, dual to a metastable
black hole in Type IIA [Itzhaki, Maldacena, Sonneschein, Yankielowicz]:

ds2
α′ = −f(r)r2c dt2 + dr2

f(r)r2c
+

󰀕
r
rc

󰀖−3/2

dΩ2
8
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D0-brane quantum mechanics

't Hooft limit: N → ∞ holding fixed λβ3 = g2Nβ3.
In the strongly coupled regime λβ3 ≫ 1, dual to a metastable
black hole in Type IIA [Itzhaki, Maldacena, Sonneschein, Yankielowicz]:

ds2
α′ = −f(r)r2c dt2 + dr2

f(r)r2c
+

󰀕
r
rc

󰀖−3/2

dΩ2
8

S8 shrinks with r. At r ∼ λ1/3 ⇒ string scale curvature.
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III

III

IV

r = 0

r = ∞ r = ∞

r = 0

At E/N2 ≳ λ1/3 geometry is nowhere reliable.
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Kinematic constraints
Less trivial example:

Mαβγη =
󰁇

tr
󰀓
ψαψβψδψη

󰀔󰁈
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Kinematic constraints
Less trivial example:

Mαβγη =
󰁇

tr
󰀓
ψαψβψδψη

󰀔󰁈

Viewed as a matrix in the {α,β} and {γ, η} indices, positivity
requires M ≽ 0.
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Kinematic constraints
Less trivial example:

Mαβγη =
󰁇

tr
󰀓
ψαψβψδψη

󰀔󰁈

Using the "addition of SO(9) angular momentum" rules:

(16)4 = (16 × 16)2 = (1 + 9 + 36 + 84 + 128)2

= 5(1) + non-singlets

Thus group theory determines this 164 = 65536 to just 5
unknowns.

Mαβγη = δαβδη󰂃a1 + γI
αβγ

I
η󰂃a9 + γIJ

αβγ
IJ
η󰂃a36 + γIJK

αβ γIJK
η󰂃 a84

+ γIJKL
αβ γIJKL

η󰂃 a128

Cyclicity and the fermion anti-commutation relations cuts this
further to just 2 unknowns.
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Expand s-channel block in terms of t-channel blocks:

β

α

Rs
η

󰂃

=
󰁛

Rt

FRs,Rt

󰀗
16 16
16 16

󰀘
β η

Rt

α 󰂃

⇒ 6j symbol. At higher levels, need higher-pt crossing kernels.
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Kinematics determined Mαβγη in terms of 2 unknowns. We still
need to impose positivity of a large matrix Mαβ,γη. By
decomposing ψαψβ into irreps, one can easily diagonalize M.
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Kinematics determined Mαβγη in terms of 2 unknowns. We still
need to impose positivity of a large matrix Mαβ,γη. By
decomposing ψαψβ into irreps, one can easily diagonalize M.

The upshot is that by leveraging the symmetries of the model, the
D0-brane bootstrap is practical. ☺
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1.1

1.2

1.3

1.4
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Cross + is the Monte Carlo result∗ of [Berkowitz et al.'16].
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The lower bound on
󰀍
tr X2X2

󰀎
was derived (up to some factors) in

[Polchinski '99]. It can also be improved to finite energy [HL '23].
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method 〈tr X2〉
Monte Carlo

[Pateloudis et al.'22]
≈ 0.37± 0.05

primitive bootstrap
[HL '23]

≥ 0.1875

bootstrap
level 6 ≥ 0.294

bootstrap
level 7 ≥ 0.331

bootstrap
level 8+ ≥ 0.3401

bootstrap
level 9 ≥ 0.3451
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method 〈tr X2〉
Monte Carlo

[Pateloudis et al.'22]
≈ 0.37± 0.05

primitive bootstrap
[HL '23]

≥ 0.1875

bootstrap
level 6 ≥ 0.294

bootstrap
level 7 ≥ 0.331

bootstrap
level 8+ ≥ 0.3401

bootstrap
level 9 ≥ 0.3451

∼ 90% of the MC value with just level 7:
19 variable SDP, ∼ 170 EoMs, matrices of size ≲ 20× 20.
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Metastability in Monte Carlo

Monte Carlo results [Pateloudis et al. '22]
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Toy supermembrane problem

In a simpler toy problem, we see a similar-looking peninsula at low
levels, but an island at higher levels.
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I have presented some evidence that the bootstrap could yield
precision data on some correlators like

󰀍
tr X2

󰀎
.

A high precision measurement of these and/or related correlators
could give the leading corrections to the semiclassical black hole
background. [A nice candidate is 〈OBPS〉 ∼ T∆+δ.]

In principle, we could use this to constrain unknown O(α′3)
corrections to the IIa effective action. [See Hanada, Berkowitz,
Pateloudis, ... for similar discussions involving BH thermodynamics. Similar in
spirit to the CFT bootstrap program by e.g. Binder, Chester, Pufu, Wang, ... ]
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Future directions

◮ Islands?
◮ Constraints on the bound state?
◮ Finite energy/temperature
◮ Large N lattice systems, especially those with sign problems?

[Anderson & Kruczenski, Kazakov & Zheng, …]
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Future directions

◮ Islands?
◮ Constraints on the bound state?
◮ Finite energy/temperature
◮ Large N lattice systems, especially those with sign problems?

[Anderson & Kruczenski, Kazakov & Zheng, …]
◮ BMN model, other matrix models?
◮ IKKT???

Thanks!
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Sign problem?

[WIP w/ Gauri Batra and Haifeng Tang]
Motivated by the agreement with the bootstrap (at least ℓ ≤ 9),
we wish to study the sign problem. Integrating out the fermions,

󰁝
DψDc e−S = Pf(A,XI) → |Pf(A,XI)|
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Sign problem?

[WIP w/ Gauri Batra and Haifeng Tang]
Motivated by the agreement with the bootstrap (at least ℓ ≤ 9),
we wish to study the sign problem. Integrating out the fermions,

󰁝
DψDc e−S = Pf(A,XI) → |Pf(A,XI)|

Calculate in perturbation theory:
|Pf(A,XI)|2n = Pf(A,XI)nPf(A∗,XI)n

High temperature expansion → reduce to a matrix integral +
massive modes. So far: agreement at 1-loop...
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I have presented some evidence that the bootstrap could yield
precision data on some correlators like

󰀍
tr X2

󰀎
.

In the remainder of the talk, I will comment on:
What could we hope to learn by measuring

󰀍
tr X2

󰀎
precisely?
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Suppose that one day we have high precision measurements of 1-pt
functions like 〈tr Xn〉. What can we learn?

The semiclassical BH geometry and its stringy corrections
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Suppose that one day we have high precision measurements of 1-pt
functions like 〈tr Xn〉. What can we learn?

The semiclassical BH geometry and its stringy corrections

In principle, this includes properties that are currently inaccessible
by worldsheet methods.

[See Hanada et al., Berkowitz et al., Pateloudis, et al.for similar discussions
involving the BH thermodynamics.]
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In principle, a theory of quantum gravity should predict the
higher-derivative corrections to Einstein gravity, e.g.,

L ∼ R + #α′3R4 + #α′3R3F2 + · · · .

For charged black holes (with Ramond-Ramond gauge fields), the
leading correction is unknown.

A precision measurement of certain correlators will give us
information about these corrections. Similar program in the CFT
bootstrap; e.g., [Binder, Chester, Pufu, Wang '19]
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A clear target is the only SO(9) singlet field in this background χ.

χ has scaling dimension ∆ = 28/5 [Sekino & Yoneya '00, Biggs &
Maldacena '23]. The leading α′3 correction breaks the scaling
symmetry and gives rise to a non-trivial 1-pt function:

Seff ⊃ (α′)3

GN

󰁝 √ge−2φχ
󰀓

#1R4 + #2e2φR3F2 + · · ·+
󰀔

〈Oχ〉 ∝ T∆+δ = T28/5
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On the matrix side, the operator Oχ is known [Van Raamsdonk and
Taylor '98] :

Oχ ∼ Tr PIPIPJPJ + Tr[XI,XJ][XJ,XK]PKPI + · · ·+ fermions

Somewhat complicated but in principle doable.
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On the matrix side, the operator Oχ is known [Van Raamsdonk and
Taylor '98] :

Oχ ∼ Tr PIPIPJPJ + Tr[XI,XJ][XJ,XK]PKPI + · · ·+ fermions

Somewhat complicated but in principle doable.

χ is also expected to contribute to a generic SO(9) singlet due to
operator mixing, e.g.,󰀍

tr X2
󰀎
∼ #1 + #HT14/5 + #H′T23/5 + #χT28/5 + · · ·
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More generally, thermal 1-pt functions in black hole backgrounds
probe regions of high curvature, e.g., the black hole singularity
[Grinberg & Maldacena].

r = 0

r = ∞ r = ∞
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Summary

1. solvable matrix models can also be solved by bootstrap
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2. for "unsolvable" models like BFSS, bootstrap gives us some

non-trivial bounds. Old results from the matrix side [Polchinski
'99] can be reformulated and improved as a bootstrap result.
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Summary

1. solvable matrix models can also be solved by bootstrap
2. for "unsolvable" models like BFSS, bootstrap gives us some

non-trivial bounds. Old results from the matrix side [Polchinski
'99] can be reformulated and improved as a bootstrap result.

3. In principle, we could learn about stringy black holes using the
bootstrap. We are in the process of putting this into practice.
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Future directions I.

Bootstrapping the thermal entropy, e.g.,

S = A/(4GN) + corrections.
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Future directions I.

Bootstrapping the thermal entropy, e.g.,

S = A/(4GN) + corrections.

Recent progress [Fawzi, Fawzi & Scalet '23] in inputting the KMS
condition into the bootstrap (in the Hamiltonian approach). Uses
a non-linear relaxation of the relative entropy.

Can be applied to large N matrix quantum mechanics [Cho, Sandor,
& Yin, WIP]
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Transverse-field Ising Model at β = 1 [from Fawzi, Fawzi & Scalet].
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Future directions II.

d = 0 d = 1 d ≥ 2

1-matrix integral 1-matrix model
c = 1 matrix model

multi-matrix
integral

D0-brane
BFSS
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Future directions II.

d = 0 d = 1 d ≥ 2

1-matrix integral 1-matrix model
c = 1 matrix model 't Hooft model, …

multi-matrix
integral

D0-brane
BFSS

large N Yang Mills
large N QCD

Already some interesting progress…
[Anderson & Kruczenski '16] [Kazakov & Zheng '22] [Kazakov & Zheng, WIP]

Many other strongly-coupled lattice systems seem possible...
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