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Prof. Ashutosh delivered a talk on “Investigating Quantum Decoherence at Belle II and

LHCb” at Kavli IPMU, Tokyo, just 15 days before his untimely passing.
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Plan of talk

1. Theoretical Motivation

2. Effect of decoherence on the determination of ∆md and ∆ms

3. Effect of decoherence on the determination of sin 2β and sin 2βs

4. Results from arXiv:2501.03136

5. A method to obtain the best limit on decoherence parameter.

6. Conclusions

The talk is based on our recent works “Experimental limits on quantum deco-

herence from B-meson systems”, arXiv:2501.03136 and previous work “ Probing

quantum decoherence at Belle II and LHCb ” published in JHEP 05, 124 (2024).
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Theoretical Motivation

• Any system of particles interacts with its environment.

• The formalism of Open Quantum Systems is developed to describe this interaction.

• Density matrix formalism is used to describe the time evolution of the system.

• If the system consists of a single unstable particle, this formalism just yields the

radioactive decay law.

• However, if the system consists of two particles which can oscillate into each other,

then the formalism necessarily introduces a parameter which leads to quantum

decoherence in the two state system.

P. Caban et. al. Unstable particles as open quantum systems,

Phys. Rev. A72 (2005) 032106.

• This decoherence arises due to the system-environment interactions.

Possible environment

System-environment interactions may arise at a fundamental level, such as the

fluctuations in a quantum gravity space-time background [S.W. Hawking (1982);

J. R. Ellis et. al. (1984); Huet-Peskin (1995)].
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Neutral B mesons as an Open Quantum Systems

• We use an effective description which is phenomenological in nature. It is

independent of the details of the actual dynamics between the system and

environment.

• Within the framework of open quantum systems, the neutral B mesons are described

as subsystems in interaction with an environment.

• The evolution of the complete system is given by the standard unitary operator.

• The dynamics of a B meson alone is obtained by a suitable integration over the

environment degrees of freedom.

• Assuming the interaction between the B meson and the environment to be weak, the

dynamics of the B meson subsystem can be described by quantum dynamical

semigroups satisfying the condition of complete positivity.
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Open time evolution of B mesons

• We are interested in the decays of B0 and B̄0 mesons as well as B0 ↔ B̄0

oscillations.

• To describe the time evolution of all these transitions, we need a basis of three

states:
∣∣B0

〉
,
∣∣B̄0

〉
and |0⟩, where |0⟩ represents a state with no B meson. It

characterizes the decayed state.

• We use the density matrix formalism to represent the time evolution of the B0

system: ρB0 (0) is the initial density matrix for the state which starts out as B0.

Similarly ρB̄0 (0) is for B̄0.

• The time evolution of these matrices is governed by the Kraus operators Ki (t) as

operator-sum form ρ(t) =
∑

i Ki (t)ρ(0)K
†
i (t). These operators are constructed

taking into account the decoherence in the system which occurs due to the evolution

under the influence of the environment.

• The Kraus operators, initially developed for the K meson system, have been utilized

in our analysis to explore the B meson systems.

P. Caban et. al. An Open Quantum Systems Approach to the Evolution of

Entanglement in K0 − K̄0 systems. Phys. Lett. A 363 (2007) 389.
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Open time evolution of B mesons

• A meson initially in state ρB0 (0) =
∣∣B0

〉 〈
B0

∣∣ evolves in time to ρB0 (t).

• The time evolution is implemented through the Kraus Operators Ki (t) mentioned in

the previous slide.

• There is a similar relation between ρB̄0 (0) =
∣∣B̄0

〉 〈
B̄0

∣∣ and ρB̄0 (t).

Time dependent density matrices

ρB0 (t)
1
2
e−Γt

=

 ach + e−λtac ( q
p
)∗(−ash − ie−λtas) 0

( q
p
)(−ash + ie−λtas) | q

p
|2(ach − e−λtac ) 0

0 0 ρ33(t)


ρ
B̄0 (t)
1
2
e−Γt

=

 | p
q
|2(ach − e−λtac ) ( p

q
)(−ash + ie−λtas) 0

( p
q
)∗(−ash − ie−λtas) ach + e−λtac 0

0 0 ρ′33(t)
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Open time evolution of B mesons

• The mixing of B0 and B̄0 forms two mass eigenstates B0
L = pB0 + qB̄0 and

B0
H = pB0 − qB̄0 (light and heavy states of B mesons) with complex coefficients p

and q, satisfying the condition |p|2 + |q|2 = 1.

• These states have masses mL and mH and decay widths ΓL and ΓH respectively. We

also define Γ = (ΓL + ΓH)/2, ∆Γ = ΓL − ΓH and ∆m = mH −mL.

• The quantities in the boxed equations of the previous slide are

ach = cosh

(
∆Γ t

2

)
, ash = sinh

(
∆Γ t

2

)
, ac = cos (∆m t) and as = sin (∆m t) .

• λ is the decoherence parameter, arising due to the interaction of the B meson with

the environment.

• Non-zero value of λ leads to the loss of the perfect coherence, usually assumed,

between B0 and B̄0 in the time evolution of the mass eigenstates BL and BH .

• ρ33(t) and ρ′33(t) are some functions of parameters defined above, 2(eΓt − ach) in

the limit p/q → 1. However, they do not contribute to the present analysis.
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Open time evolution of B mesons

• In the formalism of density matrices, any physical observable of the neutral B-meson

system is described by a suitable hermitian operator O.

• Its evolution in time can be obtained by taking its trace with the density matrix ρ(t).

Of particular interest are those observables Of that are associated with the decay

of a B-meson into final states ‘f ’. In the
∣∣B0

〉
,
∣∣∣B̄0

〉
, and |0⟩ basis, Of is

represented by

Of =

 |A(B0 → f )|2 A(B0 → f )
∗
A(B̄0 → f ) 0

A(B0 → f )A(B̄0 → f )
∗ |A(B̄0 → f )|2 0

0 0 0

 .

Here the entries are written in terms of the two independent decay amplitudes

A(B0 → f ) ≡ Af and A(B̄0 → f ) ≡ Āf .

The Probability that an initial B0 meson decays, at time t, into a given state f is

given by Pf (B
0; t) = Tr [Of ρB0 (t)]. Similarly, Pf (B̄0; t) = Tr [Of ρB̄0 (t)].

We are now equipped with with all the pieces required for the calculation of effects of

decoherence on various important B physics observables.
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Effect of decoherence on meson anti-meson mixing
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Measurement of ∆m

• Consider a final state f such that it occurs in the decay of only B0 meson. Charged

current semi-leptonic decays are a good example of such states.

• If the B meson at production (time t = 0) is tagged as B0, it can decay into f only

if it survived as B0 at the time of decay t.

• On the other hand, if the B meson at t = 0 is tagged as a B̄0, then it can decay into

f only if it oscillated into B0 at the time of decay t.

• This naturally leads to the definitions of survival and oscillation probabilities as

Survival and Oscillation Probabilities

Psur(t) =
e−Γt

2
[cosh(∆Γt/2) + cos(∆m t)] ,

Posc(t) =
e−Γt

2

∣∣∣∣qp
∣∣∣∣2 [cosh(∆Γt/2)− cos(∆m t)] .
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Decoherence in the Measurement of ∆md

• LHCb, CDF and D0 experiments determine ∆md by measuring Psur(t) and Posc(t)

as function of proper decay time t.

• In the presence of decoherence, these probabilities are modified to

Survival and Oscillation Probabilities

Psur(t, λ) =
e−Γt

2

[
cosh(∆Γd t/2) + e−λt cos(∆md t)

]
,

Posc(t, λ) =
e−Γt

2

∣∣∣∣qp
∣∣∣∣2 [cosh(∆Γd t/2)− e−λt cos(∆md t)

]
.

• Note that the decay width Γ multiplies the whole expression whereas the

decoherence term λ multiplies only the oscillating term, which depends on ∆md .
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Decoherence in the Measurement of ∆md

• For the Bd system, the Standard Model (SM) predicts |q/p| to be very close to 1

and ∆Γd is negligibly small.

• The value of ∆md is determined from the survival/oscillation probabilities by

assuming perfect coherence (λ = 0), in addition to the above two SM based

assumptions.

• However, the time evolution from open quantum systems point of view shows that

these probabilities depend on the decoherence parameter λ.

• One must do a two parameter fit with ∆md and λ of the above expressions, rather

than a one parameter fit with just ∆md .

The true value of ∆md is modified when the decoherence parameter λ is included

in the fit.

13



Measurement of ∆ms

• Three years ago, the LHCb Collaboration published the most precise determination

of Bs − B̄s oscillation frequency. Nature Phys. 18, no.1, 1-5 (2022).

• In addition to Psur(t) and Posc(t), they have also used the mixing asymmetry

Time dependent mixing asymmetry

Amix(t) =
Psur(t)− Posc(t)

Psur(t) + Posc(t)
=

cos(∆ms t) + δB cosh(∆Γs t/2)

cosh(∆Γs t/2) + δB cos(∆ms t)
.

where

δB =
1−

∣∣∣ qp ∣∣∣2
1 +

∣∣∣ qp ∣∣∣2 .
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Measurement of ∆ms

In the plot below, the left panel shows Psur(t) (in blue) and Posc(t) (in red) as a

function of the proper decay time t. The right panel shows the mixing asymmetry as a

function of t modulo 2π/∆ms .
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We note that the fit in the right panel is essentially a cosine function. The effect of ∆Γs
and δB , in the fit to Amix(t), is not very significant.
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Decoherence in the Measurement of ∆ms

• In the presence of decoherence, the survival and the oscillation probabilities get

modified in exactly the same way they got modified for the Bd system.

• The mixing asymmetry now has a more complicated form given by

Amix(t, λ) =
Psur(t, λ)− Posc(t, λ)

Psur(t, λ) + Posc(t, λ)
=

e−λt cos(∆ms t) + δB cosh(∆Γs t/2)

cosh(∆Γs t/2) + δBe−λt cos(∆ms t)
.

• The net effect is to replace cos(∆ms t) in the mixing asymmetry by e−λt cos(∆ms t).

• Fitting the survival/oscillation probabilities or Amix, including decoherence, will be a

complicated process because the effects of ∆Γs and δB can not be neglected.
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Effect of decoherence on determination of CP violation parameters
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CP violation in B decays

The CKM phase in 3×3 quark mixing matrix manifests in the B meson systems in three

different ways:

1. CP violating in mixing: P(B0 → B̄0) ̸= P(B̄0 → B0)

Box diagram enables B0 ↔ B̄0 oscillation:

• B0
d oscillations are fast! 2 million times a second

• And B0
s are even faster, 35 times faster

• Mass and flavour eigenstates not the same:

|B0
H⟩ = p|B0⟩ − q|B̄0⟩ |B0

L⟩ = p|B0⟩+ q|B̄0⟩

• CP violation in mixing occurs if |q/p| ̸= 1
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CP violation in B decays

2. CP violation in decay: P(B → f ) ̸= P(B̄ → f̄ )

CP violation in decay occurs if ∣∣∣∣ Āf̄

Af

∣∣∣∣ ̸= 1,

where

Af ≡ ⟨f |H|P⟩ and Āf̄ ≡ ⟨f̄ |H|P̄⟩.

In charged meson decays, no mixing is involved. In such a situation, an observable CP

violating quantity is

Af± ≡
Γ(P− → f −)− Γ(P+ → f +)

Γ(P− → f −) + Γ(P+ → f +)
.

A nonvanishing Af± is often termed “direct” CP violation.
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CP violation in B decays

3. CP violation through mixing-decay interference: P(B0 → B̄0 → f ) ̸= P(B̄0 →
B0 → f̄ )

• This type of CP violation occurs if Im(λf ) ̸= 0, where

λf ≡
q

p

Āf

Af
,

where Āf ≡ ⟨f |H|P̄⟩.

• The CP violating parameters, sin 2β and sin 2βs , are related to third type of CP

violation. Their measurement requires construction of time-dependent

CP-asymmetry.
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Unitarity triangles

The unitarity of the CKM matrix implies the relation V †V = 1. This can be viewed as

conditions on combinations of CKM elements in a complex plane.

The CKM matrix satisfies three distinct relations of the form [V †V ]ij = 0 (i ̸= j). These

give rise to three different unitarity triangles.

For example,

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0.

This relation may be represented as a triangle in the complex plane, whose sides are the

three complex quantities V ∗
ubVud ,V

∗
cbVcd , and V ∗

tbVtd . This triangle is:

sin 2β is obtained through a time-dependent analysis of B0
d → J/ψKS decay.
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Time dependent CP violation in B0
d → J/ψKS

The “golden channel” Bd/B̄d → J/ψKS (induced by the quark level transition b → cc̄s),

has given us a rather clean measurement of β, one of the angles of the unitarity triangle.

Mixing and decay diagrams interfere:

• B0 − B̄0 oscillation is periodic in time ⇒ CP violation is time dependent.

• The dominant contribution comes from one tree level decay diagram shown above,

so |λf | ≈ 1.

• As Āf /Af ≈ (VcbV
∗
cs)/(V

∗
cbVcs) ≈ 1 and as q/p = exp[−i Arg(M12)] where

Arg(M12) = Arg(V ∗
tbVtdV

∗
tbVtd ) ≈ −2β, so q/p ≈ e2iβ . Thus λf ≈ sin 2β.

• In the Bd system, the lifetime difference ∆Γ is extremely small: in the SM,

∆Γ/Γ ≈ 0.5%.

Thus the “standard” time dependent CP asymmetry for decay turns out to be

sin 2β sin(∆mt).
22



Decoherence in CP asymmetry in B0/B̄0 → fCP decays

Let us consider B0/B̄0 → fCP decays where, fCP can be J/ψKS or D+D− final states for

B0
d and ψϕ for B0

s meson.

The operator for these decay modes can be written as

OfCP = |Af |2

 1 ( p
q
)λf 0

( p
q
)∗λ∗f | p

q
|2|λf |2 0

0 0 0

 .

λf is the phase invariant quantity defined as:

λf =
q

p

Āf

(
≡ A(B̄0 → fCP)

)
Af (≡ A(B0 → fCP))

.

Therefore the probability rate that an initial state B0/B̄0 decays into final state fCP is

given by

PfCP (B
0; t)

1
2
e−Γt |Af |2

=
(
1 + |λf |2

)
cosh

(
∆Γt

2

)
+

(
1− |λf |2

)
e−λt cos (∆mt)

−2Re(λf ) sinh

(
∆Γt

2

)
− 2Im(λf )e

−λt sin (∆mt) .
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Decoherence in CP asymmetry in B0/B̄0 → fCP decays

PfCP (B̄
0; t)

1
2
e−Γt |Af |2| pq |2

=
(
1 + |λf |2

)
cosh

(
∆Γt

2

)
−

(
1− |λf |2

)
e−λt cos (∆mt)

−2Re(λf ) sinh

(
∆Γt

2

)
+ 2Im(λf )e

−λt sin (∆mt) .

CP asymmetry in the interference of mixing and decay

AfCP (t) =
PfCP (B

0; t)− PfCP (B̄
0; t)

PfCP (B
0; t) + PfCP (B̄

0; t)
.

Neglecting CP violation in mixing (setting |q/p|2 = 1), we get

AfCP (t) =
A
dir, fCP
CP cos (∆mt) + A

mix, fCP
CP sin (∆mt)

cosh
(

∆Γt
2

)
+ A

fCP
∆Γ sinh

(
∆Γt
2

) e−λt .

A
dir, fCP
CP =

1− |λfCP |
2

1 + |λfCP |2
, A

fCP
∆Γ = −

2Re(λfCP )

1 + |λfCP |2
, A

mix, fCP
CP = −

2Im(λfCP )

1 + |λfCP |2
, .
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Decoherence in CP asymmetry in B0/B̄0 → fCP decays

This time-dependent CP asymmetry with λ = 0 is used to determine quantities like sin 2β

and sin 2βs where β ≡ arg
[
−(VcdV

∗
cb)/(VtdV

∗
tb)

]
and βs ≡ arg

[
−(VtsV

∗
tb)/(VcsV

∗
cb)

]
are

the angles of the unitarity triangle.

Determination of sin 2β

For e.g., the most statistically precise measurement of sin 2β is obtained through

a time-dependent analysis of B0
d → J/ψKS .

For this decay channel, ∆Γd ≈ 0, |λf | ≈ 1 and Im(λf ) ≈ sin 2β which gives

AfCP (t) ≈ sin 2β sin (∆md t) .

In the presence of decoherence, this asymmetry becomes

AfCP (t) ≈
[
e−λt sin 2β

]
sin (∆md t) .

The coefficient of sin (∆md t) is e−λt sin 2β and not sin 2β!

The measurement of sin 2β (and sin 2βs) is masked by the presence of decoherence.
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Estimation of λd and λs from the B meson data of LHCb (arXiv: 2501.03136)

26



Mixing asymmetry in Bd system

• In order to obtain an estimate of the decoherence parameter λ, the data on

survival/oscillation probabilities or the CP asymmetry, should be expressed as

functions of the proper decay time t.

• For most of the published data, the independent variable is not t.

• The following two LHCb papers, the time-dependent mixing asymmetry in Bd

system is indeed given as a function of t: arXiv:1604.03475 and arXiv:2309.09728.

We used these data to obtain an estimate of λd

• Assuming |q/p| = 1, the time-dependent mixing asymmetry, with decoherence, is

Amix(t, λd ) =
cos(∆md t)

cosh(∆Γd t/2)
e−λd t .

Fitting this expression to the experimental data will yield an estimate of λd
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Mixing asymmetry in Bd system

Validating the Parameter Estimation (arXiv:1604.03475)

• We set |q/p| = 1 and take the decay width difference ∆Γd to be zero.

• The measurement of the oscillation frequency of Bd -mesons are from the

decays B0
d → D(∗)−µ+νµX and B0

d → D−µ+νµX .

• The results are reported for four different tagging efficiencies across 2011

and 2012 runs.

• We first validate our method by reproducing the reported results (only with

the best tagging quality data) by putting the decoherence parameter to

zero.

• We obtained the oscillation frequency ∆md = 0.494± 0.007 ps−1 against

the reported result ∆md = 0.505± 0.002± 0.001 ps−1.
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CP Asymmetry in Bd system

• In addition to mixing asymmetry, neutral mesons also exhibit CP-asymmetry where

mesons can decay into states of definite CP.

• Neglecting CP violation in mixing, the time-dependent CP asymmetry in systems
having decoherence is:

AfCP
(t, λd ) =

A
dir, fCP
CP cos (∆md t) + A

mix, fCP
CP sin (∆md t)

cosh (∆Γd t/2) + A
fCP
∆Γ sinh (∆Γd t/2)

e−λq t ,

• where

A
dir, fCP
CP =

1− |λfCP |
2

1 + |λfCP |2
, A

fCP
∆Γ = −

2Re(λfCP )

1 + |λfCP |2
, A

mix, fCP
CP = −

2Im(λfCP )

1 + |λfCP |2
.

• The denominator of the AfCP (t, λd ) simplifies to 1 in the limit ∆Γd is neglected.

The procedure for extracting the decoherence parameter is the same as for mixing

asymmetry.
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CP asymmetry in Bd system

Validating the Parameter Estimation (arXiv:2309.09728)

• To this end, we used the LHCb measurement of CP-asymmetry in

B0
d → ψK0

S decays.

• We first set the decoherence parameter to be zero

• We obtained the values of CP-violating parameters to be A
dir, fCP
CP =

−0.005± 0.012 and, A
mix, fCP
CP = 0.715± 0.014.

• These values were found to be in good agreement with the published

results, A
dir, fCP
CP = −0.004± 0.012 and, A

mix, fCP
CP = 0.724± 0.014.

30



Estimation of λd from a Combined Fit of Mixing and CP asymmetries

We performed a combined fit to the time-dependent mixing and CP-asymmetry data.

Results of the Combined Fit without decoherence

• The oscillation frequency was found to be ∆md = 0.494± 0.007.

• The CP-violating parameters were found to be A
dir, fCP
CP = −0.010± 0.018

and, A
mix, fCP
CP = 0.711± 0.020.

• The value of χ2/dof for this fit was found to be 2.84.

Results of the Combined Fit with decoherence

• The oscillation frequency was found to be ∆md = 0.469± 0.005 ps−1.

• The CP-violating parameters were found to be A
dir, fCP
CP = −0.005± 0.021

and, A
mix, fCP
CP = 0.836± 0.038.

• The decoherence parameter was found to be λd = 0.055± 0.009 ps−1. The

χ2/dof for the fit was 1.76, which indicates a better fit as compared to one

with vanishing decoherence parameter.
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Estimation of λs from Bs-meson data

We used the data for mixing asymmetry from an old LHCb paper (arXiv:1308.1302, Eur.

Phys. C (2013) 73:2655). The left panel of figure-7 of this paper is reproduced below.
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Estimation of λs from Bs-meson data

From the figure in the previous slide, we generated the following figure:
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Estimation of λs from Bs-meson data

• As in the case of Bd meson, we assumed |q/p| = 1.

• Unlike in the case of Bd meson, the value of ∆Γ is not neglected.

• The decay width difference was kept constant at its current world average value of

∆Γs = 0.083± 0.005.

Results

• We first validated the applicability of our method by taking λs = 0. We

obtained the oscillation frequency to be ∆ms = 18.65± 0.32 with

χ2/dof = 1.74.

• λs was now floated as a free parameter in the fit and we obtained

∆ms = 18.85± 0.33 and λs = 1.72± 0.52, with χ2/dof = 1.02.
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Precision Measurement of Bs-meson Oscillation Frequency

Recently, the LHCb Collaboration published a paper (Nature Phys. 18 1-5 (2022),

arXiv:2104.04421) on the precise determination of Bs − B̄s oscillation frequency.
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Final Comment

• As we can see, the Bs oscillation data of LHCb from the 2021 paper has a far

greater statistical weightage compared to that from 2013 paper.

• We were unable to convert the data from the 2021 paper into a form that can be

used to make a fit.

• The data in the previous figure is directly in the form Psur(t) and Posc(t).

• The strongest constraint on λs can be obtained by fitting the above data to the

formulae below:

Survival and Oscillation Probabilities

Psur(t, λs) =
e−Γt

2

[
cosh(∆Γs t/2) + e−λs t cos(∆ms t)

]
,

Posc(t, λs) =
e−Γt

2

∣∣∣∣qp
∣∣∣∣2 [cosh(∆Γs t/2)− e−λs t cos(∆ms t)

]
.
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Back-up Slides
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Semigroup
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What is a Semigroup?

A semigroup is a concept from abstract algebra. It is a set equipped with an associative

binary operation. Specifically, a semigroup must satisfy two properties:

1. Closure: For any two elements a and b in the set, the result of the operation on a and

b must also be in the set. If the operation is denoted by ◦, then for all a, b ∈ S , we must

have:

a ◦ b ∈ S

This means the set is ”closed” under the operation.

2. Associativity: The operation must be associative. That is, for all elements a, b, and c

in the set, the operation satisfies:

(a ◦ b) ◦ c = a ◦ (b ◦ c)

This means that how you group the elements when performing the operation doesn’t

affect the result.

Example: Consider the set of non-negative integers N0 = {0, 1, 2, 3, . . . } with the

operation of addition. The pair (N0,+) forms a semigroup because:

• Closure: The sum of any two non-negative integers is also a non-negative integer.

• Associativity: Addition is associative, i.e.,

(a+ b) + c = a+ (b + c).
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Semigroups vs Groups

Semigroups:

• No requirement for an identity element or inverses.

Groups:

• Must have an identity element (neutral element for the operation).

• Must have inverses for every element (i.e., an element that ”undoes” the operation).

In summary:

• A semigroup is a set with an associative operation.

• A group is a semigroup with an identity element and inverses.

In open quantum systems, semigroups describe the time evolution where the evolution is

governed by a family of operators St (superoperators), forming a one-parameter

semigroup:

• The time evolution operators St are associative.

• For any times t1, t2 ≥ 0, the evolution satisfies:

St1+t2 = St1St2 .

This means the system’s evolution from time t1 to t1 + t2 can be broken down into two

sequential steps.
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Complete positivity
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Complete Positivity

Complete positivity is a critical concept in quantum information theory and quantum

mechanics, particularly when discussing the evolution of open quantum systems. It is a

stronger version of positivity that ensures that the physical state of a quantum system

remains valid even when the system is entangled with an external environment.

To understand complete positivity, let’s first discuss positivity.

Positivity

In quantum mechanics, a density matrix ρ describes the state of a quantum

system. The density matrix must satisfy certain conditions to be physically mean-

ingful:

• It must be positive semi-definite, meaning all of its eigenvalues are

non-negative. This guarantees that all probabilities derived from it (such as

measurement outcomes) are valid.

A quantum operation or map Φ is positive if it takes any valid density matrix ρ

(with non-negative eigenvalues) and transforms it into another valid density matrix

Φ(ρ) that is also positive semi-definite.

However, positivity alone is not enough to describe the full behavior of quantum systems,

particularly when we consider subsystems of a larger, entangled system with environment.

This is where complete positivity comes in.
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Complete Positivity

A quantum operation Φ is completely positive if, when it acts on part of a larger system

(for example, a quantum system entangled with another system), it ensures that the

entire system remains in a valid quantum state.

Why Complete Positivity is Important

When dealing with quantum systems that are not isolated (which is the case for

real-world quantum systems), we need to consider the interactions between the

system and its environment. A quantum operation must not only preserve the

positivity of the system’s state but also ensure that when the system is part of a

larger entangled system, the overall state remains physically valid. This is crucial

for ensuring consistency with quantum mechanics.

Imagine we have a quantum system A and an ancillary system B that may be

entangled with A. If we apply a quantum operation to system A alone, but

system A is entangled with B, the operation on A should not produce unphysical

or invalid results when considering the entire system A+ B.

Complete positivity guarantees that even when the quantum operation acts only

on part of the system, the overall system’s state remains valid, preserving the

structure of quantum mechanics.
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Completely Positive Maps and Kraus Operators

Choi matrix: The Choi matrix is a tool used to determine if a map is completely positive.

A map is completely positive if and only if its corresponding Choi matrix is positive

semi-definite.

A quantum operation Φ can be expressed using Kraus operators:

Φ(ρ) =
∑
i

KiρK
†
i ,

where Ki are Kraus operators. For Φ to be completely positive, they must satisfy:∑
i

K†
i Ki = I .

Summary

• Positivity ensures a quantum operation keeps a density matrix positive

(physically valid) when acting on an isolated system.

• Complete positivity guarantees the operation also works correctly when the

system is part of a larger entangled system.

Complete positivity is a key requirement for quantum channels and is essential for

maintaining the physicality of quantum states in open quantum systems.
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