

$H \rightarrow \tau \tau$ MEASUREMENTS AT FCC-ee IN THE ZH CHANNEL AT 240 GeV

Sofia Giappichini, Markus Klute, Matteo Presilla, Aaron Wiedl, Xunwu Zuo

> Higgs/top performance meeting Feb. 4th , 2025

> Sofia Giappichini - sofia.giappichini@cern.ch

Targets and news

- Relative uncertainty of ZH, $H \rightarrow \tau \tau$ cross-section at $\sqrt{s} = 240$ GeV at FCC-ee
 - \rightarrow final updates in this presentation
 - **Explicit** (from Maria Cepeda) vs. **ML-based** tau reconstruction (FCC PNet jet tagger)
 - Inclusive vs. exclusive jet algorithm
 - Cut-based vs. BDT event selection
- Further studies (just begun):
 - We will also repeat the same analysis with ZH and VFB signals at $\sqrt{s} = 365$ GeV
 - CP violation in the same channel

General workflow

- We excluded all isolated electrons and muons ($p_T > 20$ GeV and iso<0.25) from jets
 - Inclusive e^+e^- generalized kt algorithm with R=0.5 and $p_{T,i} > 2$ GeV
 - **Exclusive** e^+e^- **Durham algorithm** with n_{jets} depending on the category
- We define **nine categories** based on the Z and tau decays ($\ell = e, \mu$)

$\blacksquare Z \to \ell \ell$	$\blacksquare H \to \tau_\ell \tau_\ell$
$\blacksquare Z \to qq$	$\blacksquare H \to \tau_{\ell} \tau_h$
$\Box Z \rightarrow \nu \nu$	$\blacksquare H \to \tau_h \tau_h$

- Basic selection requires exactly the objects in each category to be reconstructed
- Leptonic taus are always handled "manually" by selecting the isolated leptons
- Quark jets are differentiated from hadronic tau jets depending on the reconstruction method
 next slide

Tau reconstruction

Both methods are based on jet clustering

Explicit

- Only jets with no electrons or muons
- Gets the leading π
- Adds constituents to it if pt>1 GeV and $\Delta \theta < 0.2$
- Defines a tau ID based on decay modes

ParticleNet

- Trained on di-jets events
- Assigns quark/tau score for each jet
- We select jets with tau score > 0.5

	Explicit tau reconstruction		ParticleNet tau reconstruction	
	Inclusive jets	Exclusive jets	Inclusive jets	Exclusive jets
$Z \to \nu \nu, \ H \to \tau \tau$	90.34%	87.09%	97.60%	94.20%
$Z \to ee, \ H \to \tau \tau$	84.96%	78.07~%	95.15%	83.21~%
$Z \to \mu\mu, \ H \to \tau\tau$	84.96%	79.94%	95.15%	83.21%
$Z \to bb, \ H \to \tau \tau$	77.69%	77.31%	76.23%	65.72%
$Z \to cc, \ H \to \tau \tau$	78.45%	78.07%	76.58%	65.72%
$Z \to ss, \ H \to \tau \tau$	78.82%	78.07%	76.15%	65.50%
$Z \to qq, \ H \to \tau \tau$	78.78%	77.95%	76.57%	65.50%

Efficiency compared to true taus

4 04/02/25 - Sofia Giappichini

CUT-BASED ANALYSIS

Selection

- Event selection only differs between visible and invisible Z decays
 - Consistent physics picture between the combinations of tau reconstructions and jet clustering
 - Detailed optimization of \sqrt{S}/B only marginally improves the precision
- Example plots show the inclusive jets with explicit tau reconstruction and ParticleNet reconstruction in the case of the tau score (this slide)

$Z \rightarrow \ell \ell \text{ and } Z \rightarrow qq$

Cut description for $Z \to \ell \ell$ and $Z \to qq$	Values
1. Selection for $Z \to \ell \ell$	Two leptons with same flavor and opposite charges,
	two taus with opposite charges
1. Selection for $Z \to qq$	Two jets and two taus with opposite charges
2. Collinear mass	$100 < M_{collinear} < 150 { m ~GeV}$
3. Recoil mass	$115 < M_{recoil} < 160 {\rm ~GeV}$
4. Reconstructed Z mass	$70 < M_Z < 100~{\rm GeV}$
5. Angular distance between taus	$\Delta R_{\tau\tau} > 2$
6. Cosine of the angle between taus	$\cos\theta_{\tau\tau} < -0.6$
7. Cosine of missing theta	$ \cos \theta < 0.98$

ZZ

Z(ττ)H(VV)

Z(II)H(VV)

FCCAnalyses: FCC-ee Simulation (Delphes)

Ζ(ττ)Η(ττ)

Z(vv)H(VV)

Reco Z mass

04/02/25 - Sofia Giappichini 7

$Z \rightarrow \nu \nu$

Cut description for $Z \to \nu \nu$	Values
1. Selection	Two taus with opposite charges
2. Missing energy	$\not\!$
3. Missing rapidity	y < 1
4. taus azimuthal angle	$ \Delta \phi_{ au au} < 3$
5. Angular distance between taus	$\Delta R_{ au au} > 2$
6. Cosine of the angle between taus	$\cos\theta_{\tau\tau} < -0.4$
7. Cosine of missing theta	$ \cos \theta < 0.98$

8 04/02/25 - Sofia Giappichini

BDT ANALYSIS

BDT training

- We trained a different BDT in each category for $Z \rightarrow qq$ and $Z \rightarrow \nu\nu$
- No significant overtraining was observed for BDT of 200 trees and depth of 2
- Samples split into 70/30 for training and testing, both used in the analysis

BDT selection

- The training is very effective in separating signal from background in all categories
- But $Z \rightarrow \nu \nu$ is still background-dominated
- We selected events with the BDT score above 0.5 in all cases

RESULTS

12 04/02/25 - Sofia Giappichini

Results

- Combine shape-based fit <u>arXiv:2404.06614</u> with 20% InN background uncertainty and MC statistical uncertainties
 - Cut-based analysis: M_{recoil} for $Z \to \ell \ell$ and $Z \to qq$, M_{vis} for $Z \to \nu \nu$

BDT analysis: M_{recoil} for $Z \to \ell \ell$, BDT score for $Z \to qq$ and $Z \to \nu \nu$

- Final numbers for the relative uncertainty (68% CL) of $H \rightarrow \tau \tau$ cross section at $\sqrt{s}=240$ GeV, $\mathscr{L}=10.8$ ab⁻¹
- Best result from ParticleNet tau reconstruction using exclusive jets and applying the BDT selection

					_
	Explicit tau reconstruction		ParticleNet tau reconstruction		1
	Inclusive jets	Exclusive jets	Inclusive jets	Exclusive jets	
Cut-based analysis	-1.28 %, $+1.30$ %	$\pm 1.54\%$	$\pm 0.95\%$	$\pm 1.15\%$	
BDT analysis	$\pm 1.02\%$	± 0.88	$\pm 0.79\%$	$\pm 0.74\%$	
					_

Background uncertainty

- We also varied the background uncertainty from 0 to 20 % only in the case of the BDT analysis
- We think 20% uncertainty is too conservative, we propose to use 2% instead -> open to suggestions/discussion

	Explicit tau reconstruction		ParticleNet tau reconstruction	
	Inclusive jets	Exclusive jets	Inclusive jets	Exclusive jets
BDT analysis - 20%	$\pm 1.02\%$	$\pm 0.88\%$	$\pm 0.79\%$	$\pm 0.74\%$
BDT analysis - 5%	$\pm 1.00\%$	$\pm 0.86\%$	$\pm 0.78\%$	$\pm 0.72\%$
BDT analysis - 2%	$\pm 0.98\%$	$\pm 0.83\%$	$\pm 0.76\%$	$\pm 0.69\%$
BDT analysis - 0%	$\pm 0.92\%$	$\pm 0.77\%$	$\pm 0.70\%$	$\pm 0.63\%$

Next steps

- Analysis at 240 GeV is now complete and documented
- Updated analysis note on CDS soon
- We began to look into ZH and VBF $H \rightarrow \tau \tau$ at 365 GeV
- We plan to publish this work later on (240+365 cross-section)
- Ongoing efforts to study CPV with EFT signal in the same channel at 240 GeV
- This will be a separate work/paper, unfortunately not in time for the European strategy

BACKUP

16 04/02/25 - Sofia Giappichini

Detailed results

	Explicit tau reconstruction			
	Cut-based analysis		BDT analysis	
	Inclusive jets	Exclusive jets	Inclusive jets	Exclusive jets
$Z \to qq, \ H \to \tau_\ell \tau_\ell$	-29.50%, +29.38%	-29.04%, +28.60%	-5.37%, +5.49%	-4.24%, +4.30%
$Z \to qq, \ H \to \tau_\ell \tau_h$	-4.00%, +3.94%	-4.15%, +4.04%	$\pm 2.94\%$	$\pm 2.46\%$
$Z \to qq, \ H \to \tau_h \tau_h$	-3.07%, +3.04%	-9.30%, +8.84%	$\pm 2.15\%$	$\pm 1.88\%$
$Z \to qq$	-1.89%, +1.89%	-2.60%, +2.64%	$\pm 1.64\%$	$\pm 1.44\%$
$Z \to \ell \ell, \ H \to \tau_\ell \tau_\ell$	-17.96%,	+18.42%		-
$Z \to \ell \ell, \ H \to \tau_{\ell} \tau_h$	-4.65%, +4.83%	-5.41%, +5.55%		-
$Z \to \ell \ell, \ H \to \tau_h \tau_h$	-2.46%, +2.50%	-2.55%, +2.58%		-
$Z \to \ell \ell$	-2.08%, +2.10%	-2.18%, +2.22%		-
$Z \to \nu \nu, \ H \to \tau_\ell \tau_\ell$	-610.46%,+605.58%		-226.24%,+229.13%	
$Z \to \nu \nu, \ H \to \tau_{\ell} \tau_h$	-61.66%, +61.44%	-61.98%,+61.83%	-15.15%,15.19%	-17.31%,=17.36%
$Z \to \nu \nu, \ H \to \tau_h \tau_h$	-29.63%, +29.42%	-29.53%, +29.44%	-6.54%, +6.59%	-6.77%, +6.79%
$Z \rightarrow \nu \nu$	-11.06%, +11.12%	-11.68%, +11.72%	-5.78%, +5.85%	6.07%, +6.09%
combined	-1.30%, +1.28%	-1.54%, +1.54%	$\pm 1.02\%$	$\pm 0.88\%$

Detailed results

	ParticleNet tau reconstruction			
	Cut-based analysis		BDT analysis	
	Inclusive jets	Exclusive jets	Inclusive jets	Exclusive jets
$Z o qq, \ H o au_\ell au_\ell$	-25.57%, +25.43%	-22.99%, +22.50%	-4.67%, +4.79%	-3.39%, +3.43%
$Z \to qq, \ H \to \tau_\ell \tau_h$	-3.88%, +3.80%	-3.87%, +3.84%	$\pm 2.26\%$	$\pm 1.87\%$
$Z \to qq, \ H \to \tau_h \tau_h$	-2.12%, +2.08%	-2.98%, +2.88%	$\pm 1.52\%$	$\pm 1.44\%$
$Z \rightarrow qq$	-1.23%, +1.24%	-1.50%, +1.49%	$\pm 1.20\%$	±1.11
$Z \to \ell \ell, \ H \to \tau_\ell \tau_\ell$	-18.36%,	+18.81%	-	-
$Z \to \ell \ell, \ H \to \tau_\ell \tau_h$	-4.38%, +4.50%	-5.67%, +5.85%	-	-
$Z \to \ell \ell, \ H \to \tau_h \tau_h$	-1.90%, +1.91%	-2.24%, +2.24%	-	-
$Z o \ell \ell$	-1.68%, +1.69%	-2.07%, +2.08%	-	-
$Z o u u, \ H o au_\ell au_\ell$	-610.46%,	+605.58%	-226.24%,+229.13%	
$Z \to \nu \nu, \ H \to \tau_{\ell} \tau_h$	-81.42%, +81.57%	-71.37%, +71.40%	-16.17%, +16.11%	-22.23%,+22.12%
$Z \to \nu \nu, \ H \to \tau_h \tau_h$	-32.23%, +32.10%	-43.73%, +43.59%	-6.00%, +6.04%	$\pm 7.07\%$
$Z \rightarrow \nu \nu$	-13.01%, +13.04%	-16.81%, +16.81%	$\pm 6.00\%$	$\pm 6.37\%$
combined	-0.95%, +0.95%	-1.15%, +1.15%	$\pm 0.79\%$	$\pm 0.74\%$