Measurement of hadronic Higgs boson decays at FCC-ee

Alexis Maloizel George lakovidis Giovanni Marchiori Valentin Deumier Michele Selvaggi Jan Eysermans Loukas Gouskos

1

Higgs/Top Performance Meeting - 04/02/2025

Fully hadronic represents 80% of the Higgs decays

Higgs decay	H→bb	H→WW/ZZ	H→gg	Н→сс	H→ss	(Н→тт)	
BR	57.7%	11%	8.6%	2.9%	0.024%	(6.2%)	
	only one observed to this day)	Obs	ervable a	at FCC-ee	2	
				Also po decays	ossible ⁻ S	future o	bservation of Flavour-violating

Overview

ZH (Higgstrahlung)

Z decay channels

Z→II, I = e,µ Z→qq Z→vv √S & Luminosities (full program)

240 GeV → 10.8ab-1 365 GeV → 3.0ab-1

Samples IDEA (Delphes fast sim)

signals ZH@240 - H \rightarrow bb/cc/gg/ss/WW/ZZ/ $\tau\tau$ ZH(+VBF)@365 N = 2 exclusive kT clustering for Z(II/ $\nu\nu$)**, N = 4 for Z(qq) backgrounds WW, ZZ, Z/ γ *, Zqq, ee, µµ, tt, $\nu\nu$ Z, qqH

- Orthogonal selection to separate all Z decay channels (II, qq, vv)
- S/B optimization with **cuts** on H dijets and Z decay pairs
 - $\circ \quad \text{cuts on E}_{\text{jets}}, \text{E}_{\text{miss}}, \text{p}_{\text{leptons}} \text{I}, \text{m}_{\text{II/qq}}, ...$
- **Categorization** of events in relation to their tagged Higgs decay (b,c,g,s,W,Z,τ)
 - \circ ~ categorization using Jet Tagger scores + jet properties
- Simultaneous fit on all categories assuming tagging efficiencies

** We also force reconstruction of H(WW/ZZ) to be 2 jets (rather than the expected 4) Higgs/Top performance meeting 04/02/25 - Alexis Maloizel - Higgs hadronic couplings at FCC-ee

ZH→IIjj/vvjj at 240 GeV

FCCAnalyses: FCC-ee Simulation (Delphes)

Signals: Z(II)H(bb/cc/gg/ss/WW/ZZ/ $\tau\tau$) **Backgrounds:** WW, ZZ, Z/ γ^* , Zqq, ee, mumu 1D Study of the mass recoiling from the **Z** $(E_{ll} + E_H, \vec{p}_{ll} + \vec{p}_H) = (\sqrt{s}, \vec{0}) \Rightarrow M_{recoil}^2 = s + m_Z^2 - 2E_{ll}\sqrt{s}$ e^- H

Signals: $Z(vv)H(bb/cc/gg/ss/WW/ZZ/\tau\tau)$ **Backgrounds:** WW, ZZ, vvZ, Zqq, qqH 2D Study of the mass recoiling from the H + visible mass from H decay

$$m_{miss}(=m_{\nu\nu}) = m_{recoin}$$
$$m_{visible}^{} = m_{jj}$$

Higgs/Top performance meeting 04/02/25 - Alexis Maloizel - Higgs hadronic couplings at FCC-ee

Selection update at 240

• Removed all cuts on angular variables We include these variable in the NN categorization training

Ζ(νν

10

10-2

 10^{-3}

0.9

 $\cos(\theta_{i1}+\theta_{i2})$ is had

10⁻⁴ 10⁻⁵ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Higgs/T

10

 10^{-2}

 10^{-3}

Events categorization

We train a Neural Network to categorize the events in each signal channels

Z(II) Confusion Matrix

Z(vv) Confusion Matrix

0.0 0.2

Higgs/Top performance meeting 04/02/25 - Alexis Maloizel - Higgs hadronic couplings at

Training variables

mvisible (normalized)

6

Purity categorization

Goal : increase analysis sensitivity by including purity categories in the samples after

Higgs/Top performance meeting 04/02/25 - Alexis Maloizel - Higgs hadronic couplings at FCC-ee

Categorization update

We included **angular variables** to the training, and introduced new categories for the background

We tried including recoil masses to the training to fit the NN score directly

80

60

- 40

- 20

0

Example of an updated confusion matrix for **Z(II)** at **240 GeV**

Optimal strategy seem to include the newly uncut **angular vars** but without **recoil which we fit** rather than the score

We keep the purity categorization

ZH→IIjj at 365 GeV

changes compared to 240 GeV

0.005

HWW

Predicted label

HZZ Htautau

Signals: Z(II)H(bb/cc/gg/ss/WW/ZZ/ $\tau\tau$) **Backgrounds:** WW, ZZ, Z/γ*, Zqq, ee, mumu, tt 1D Study of the mass recoiling from the Z $(E_{ll} + E_H, \overrightarrow{p_{ll}} + \overrightarrow{p_H}) = (\sqrt{s}, \overrightarrow{0}) \Rightarrow M_{recoil}^2 = s + m_Z^2 - 2E_{ll}\sqrt{s}$ Z Same training Z(II) Confusion Matrix variables and strategy as for 0.017 0.44 5.2 0.001 Hbb 0.62 1.4 240GeV 80 Hcc · 1 0.001 Hag 74 6.3 0.001 60 rue label 91 5.3 0.002 Hss 0.01 0.19 4.4 40 HWW 0.021 71 9.8 0.72 HZZ -6.3 4.6 5 20

Htautau

Hhh

Higgs/Top performance meeting 04/02/25 - Alexis Maloizel - Higgs hadronic couplings at ruc-ee

Ζ

H

Results - Combination at 240 GeV

Fitting using CMS tool CombineTF to extract o.BR in each category

Monte Carlo stats uncertainties

Backgrounds are let fully floating

Yields available in the Backup

Results comparison

OLD

NEW

Expected sensitivity (%) of σ (ZH).BR(H \rightarrow jj) at 68% CL L = 10.8ab-1

240 GeV	H→bb	Н→сс	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
Z→II	0.68	4.02	2.18	234	13.66	1.78	4.08
Z→II	0.61	3.48	1.89	219	7.99	1.48	2.53
Z→νν (BNL)	0.33	2.27	0.94	137	19.84	1.89	21.76
Z→νν (APC)	0.36	2.18	1.10	151	15.29	1.51	11
Z→vv (APC)	0.34	1.98	0.99	90.95	10.40	1.33	9.65
365 GeV	H→bb	Н→сс	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
Z→II	1.74	11.29	5.74	1169	44	5.61	13.15
Z→II	1.38	9.92	4.48	1082	21.76	3.48	6.43
Higgs/ lop performance meet	ting 04/02/25 - Ale	xis Maloizel - Higg	js hadronic coupling	gs at FCC-ee			11

Combination at 240 GeV

OLD

Expected sensitivity (%) of σ .BR(H \rightarrow jj) at 68% CL L = 10.8ab-1

240 GeV	H→bb	Н→сс	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
Combined (BNL)	0.21	1.66	0.8	104.99	10.07	1.16	3.97
Combined (APC)	0.22	1.65	0.93	121	9.56	1.11	3.79
Combined	0.21	1.53	0.84	82.54	6.23	0.97	2.44

Further optimization are being tested, as **combining background NN categories** or slight purity categories optimization for **ZII** at **240GeV** Started producing samples to conduct a **ZH/VBF separation at 240GeV** Working on some cross checks for results for **Z(vv)** at **365GeV** (before implementing new optimizations)

Comparisons with ILC

Valentin Deumier

Main changes to compare with ILC

√S & Luminosities (full program)

240 GeV → 375fb-1

All fits were performed on the NN categorization score

We consider only three Higgs decay as main categories and merge all the backgrounds

	Leptonic channel		Neutrino channel						
Backgrounds	$H \rightarrow others$	Signal	Backgrounds	$H \rightarrow others$	Signal				
$e^+e^- \rightarrow Z q \bar{q}$	$e^+e^- ightarrow l^+l^- au au$	$e^+e^- \rightarrow l^+l^-b\overline{b}$	$e^+e^- \rightarrow Zq\bar{q}$	$e^+e^- \rightarrow \nu \bar{\nu} \tau \tau$	$e^+e^- \rightarrow \nu \bar{\nu} b \bar{b}$				
$e^+e^- \rightarrow ZZ$	$e^+e^- \rightarrow l^+l^-ZZ$	$e^+e^- \rightarrow l^+l^-c\bar{c}$	$e^+e^- \rightarrow ZZ$	$e^+e^- \rightarrow \nu \bar{\nu} Z Z$	$e^+e^- ightarrow u ar{ u} c ar{c}$				
$e^+e^- \to WW$	$e^+e^- \to l^+l^-WW$	$e^+e^- ightarrow l^+l^-gg$	$e^+e^- \rightarrow WW$	$e^+e^- ightarrow u ar{ u} WW$	$e^+e^- ightarrow u ar{ u} gg$				
$e^+e^- \to l^+l^-$			$e^+e^- \rightarrow \nu_e \bar{\nu_e} Z$						
			$e^+e^- \rightarrow q\bar{q}H$						

Table 4: Processes considered for each channel $(l = e, \mu \text{ and } q = b, c, u, d, s)$

No MCstats in the fit. Bkg and H(other) are floating

Optimization of the analysis

Initial fit of the score with 5 categories

	bb	сс	gg
Zll_240(noMCst.)	2.53	15.28	7.73
Znunu_240(noMCst.)	1.29	10.12	4.16
ZllZnunu_240(noMCst.)	1.15	8.42	3.66

Including recoil mass in training + optimizing NN score binning

	bb	cc	gg
Zll_240(noMCst.)	2.48	14.30	7.56
Znunu_240(noMCst.)	1.27	8.31	3.90
ZllZnunu_240(noMCst.)	1.13	7.18	3.46

Loosening angular variables cuts and including them in training

	bb	сс	gg
Zll_240(noMCst.)	2.30	13.15	7.00
Znunu_240(noMCst.)	1.22	7.69	3.90
ZllZnunu_240(noMCst.)	1.08	6.63	3.40

Results comparison with ILC

			0
L		ILC [8]	FCC-ee
	$H \rightarrow bb$	1.3	1.08
	$H \rightarrow cc$	8.3	6.63
	$H \rightarrow gg$	7.0	3.40

(b) Expected sensitivity (%) of $\sigma(ZH).BR(H \rightarrow jj)$ at 68% CL, comparison between the ILC and FCC-ee at equivalent beam parameters.

Thank you

Big thanks to : George lakovidis and Giovanni Marchiori, Jan Eysermans and Michele Selvaggi

Yields Z(II) 240 GeV

Z11_240(MCst.)	zh 0.0	51 3.48	99 1.89	219.31	7.99	ww 1.48	2.53 3.3	1 0.73	ee 0.56	
·Expected yields (significance s/√tot) fo	or Zll at E = 240	р. 								
	bb	CC	99	SS (A)	WW	ZZ	tautau	ZZ	WW	ee	TOTAL
bb_nign	5/4/8.7 (228)	2.8 (0)	84.7 (0)	0.0 (0)	13.7 (0)	114.0 (0)	0.0 (0)	5819.9 (23)	4.8 (0)	0.0 (0)	63518.6
cc_low	39.3 (1)	481.2 (8)	79.0 (1)	0.0 (0)	280.2 (5)	72.4 (1)	0.0 (0)	2295.0 (40)	43.3 (1)	0.0 (0)	3290.5
cc_nign	21.3 (0)	2463.8 (35)	34.8 (0)	0.0 (0)	36.2 (1)	14.6 (0)	0.0 (0)	2338.7 (33)	2.9 (0)	0.0 (0)	4912.2
gg_low	198.4 (6)	9.4 (0)	335.6 (10)	0.3 (0)	235.9 (7)	31.0 (1)	0.0 (0)	412.9 (12)	0.0 (0)	0.0 (0)	1223.6
gg_mid	479.9 (7)	25.8 (0)	2250.0 (33)	1.0 (0)	651.3 (10)	87.6 (1)	0.0 (0)	1190.4 (1/)	0.0 (0)	0.0 (0)	4685.9
gg_high	89.7 (1)	8.5 (0)	4941.4 (66)	0.4 (0)	196.4 (3)	26.0 (0)	0.0 (0)	418.9 (6)	0.0 (0)	0.0 (0)	5681.3
ss_low	0.9 (0)	11.6 (0)	260.3 (5)	5.5 (0)	81.9 (1)	45.8 (1)	0.0 (0)	2812.2 (49)	50.9 (1)	0.0 (0)	3269.1
ss_nign	0.1 (0)	6.5 (0)	61.1 (1)	17.4 (0)	4.5 (0)	4.3 (0)	0.0 (0)	1669.1 (40)	0.5 (0)	0.0 (0)	1/63.5
WW_10W	44.1 (0)	56.0 (1)	156.5 (2)	0.1 (0)	8011.2 (79)	190.1 (2)	1.3 (0)	1418.3 (14)	447.9 (4)	28.4 (0)	10353.8
ww_nign	2.2 (0)	1.8 (0)	3.2 (0)	0.0 (0)	2814.6 (52)	10.0 (0)	0.1 (0)	78.4 (1)	65.1 (1)	0.0 (0)	2975.4
ZZ_10W	2605.9 (24)	30.1 (0)	110.3 (1)	0.2 (0)	635.8 (6)	757.7 (7)	1.7 (0)	6305.7 (59)	1052.7 (10)	1.1 (0)	11501.3
zz_nign	23.0 (1)	0.2 (0)	1.7 (0)	0.0 (0)	60.9 (2) 305 4 (4)	395.2 (14)	0.0 (0)	215.3 (8)	124.1 (4)	0.0 (0)	820.4
tautau_nign	0.3 (0)	0.0 (0)	0.0 (0)	0.0 (0)	385.4 (4)	39.2 (0)	4/02.4 (50)	2860.0 (31)	251.5 (3)	512.7 (5)	8751.5
22_nign	160.0 (1)	13.9 (0)	21.8 (0)	0.2 (0)	155.2 (1)	102.3 (1)	5.4 (0)	25508.3 (158)	91.8 (1)	72.5 (0)	26131.4
ww_nign	0.0 (0)	0.1 (0)	0.0 (0)	0.0 (0)	12.1 (0)	3.4 (0)	8.4 (0)	248.8 (4)	2/38.3 (41)	1300.0 (21)	4377.8
ee_nign	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	6.5 (0)	0.4 (0)	14.6 (0)	342.6 (1)	1331.4 (5)	67610.1 (257)	69305.6
TOTAL	61143.7	3111.9	8340.4	25.2	13581.7	1893.9	4734.0	53934.7	6205.1	69591.3	

Yields Z(II) 365 GeV

		bb	cc	gg	SS	zz	ww	tautau	WW	ZZ	ee	tt
Zll_365(MCst.)	zh	1.38	9.92	4.48	1082.10	21.76	3.46	6.43	1.59	1.25	0.85	7.65

\sim Expected yields (signi	ificance s/√tot) f	or Zll at E = 365	5									
	bb		g g	SS	ww		tautau	ZZ	WW	ee	tt	TOTAL
bb_low	390.0 (12)	0.1 (0)	5.2 (0)	0.0 (0)	1.2 (0)	10.1 (0)	0.0 (0)	443.3 (14)	0.0 (0)	0.0 (0)	192.0 (6)	1041.9
bb_mid	4120.4 (47)	0.2 (0)	19.4 (0)	0.0 (0)	2.3 (0)	33.5 (0)	0.0 (0)	2723.2 (31)	13.7 (0)	0.0 (0)	654.2 (8)	7567.0
bb_high	10286.5 (91)	0.1 (0)	1.8 (0)	0.0 (0)	0.1 (0)	3.6 (0)	0.0 (0)	2177.6 (19)	0.0 (0)	0.0 (0)	348.4 (3)	12818.1
cc_low	25.2 (1)	162.5 (3)	29.4 (1)	0.0 (0)	96.6 (2)	26.3 (1)	0.0 (0)	1882.2 (38)	232.5 (5)	0.0 (0)	0.0 (0)	2454.8
cc_high	6.6 (0)	557.3 (11)	5.7 (0)	0.0 (0)	5.6 (0)	3.6 (0)	0.0 (0)	2128.8 (41)	41.0 (1)	0.0 (0)	0.0 (0)	2748.6
gg_low	46.8 (1)	2.7 (0)	232.7 (7)	0.2 (0)	112.6 (4)	15.4 (0)	0.0 (0)	547.0 (17)	52.0 (2)	0.0 (0)	0.9 (0)	1010.2
gg_high	52.2 (1)	3.4 (0)	1467.2 (30)	0.2 (0)	141.1 (3)	18.6 (0)	0.0 (0)	755.3 (15)	19.1 (0)	0.0 (0)	1.8 (0)	2458.9
ss_low	0.3 (0)	2.7 (0)	75.2 (1)	1.8 (0)	20.6 (0)	11.4 (0)	0.0 (0)	3845.9 (60)	123.1 (2)	0.0 (0)	0.0 (0)	4080.8
ss_high	0.0 (0)	0.9 (0)	6.0 (0)	2.6 (0)	0.4 (0)	0.4 (0)	0.0 (0)	1017.2 (31)	32.8 (1)	0.0 (0)	0.0 (0)	1060.3
ww_low	29.6 (0)	31.3 (0)	60.8 (1)	0.0 (0)	3066.7 (27)	78.8 (1)	5.6 (0)	2195.9 (20)	6895.3 (62)	3.1 (0)	80.0 (1)	12447.1
ww_mid	0.7 (0)	0.4 (0)	0.2 (0)	0.0 (0)	635.7 (17)	2.1 (0)	0.0 (0)	46.4 (1)	656.4 (18)	0.0 (0)	1.8 (0)	1343.7
ww_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	49.5 (6)	0.0 (0)	0.0 (0)	0.2 (0)	30.1 (3)	0.0 (0)	0.0 (0)	79.8
zz_low	710.8 (6)	6.5 (0)	44.8 (0)	0.1 (0)	247.3 (2)	207.3 (2)	0.7 (0)	6437.3 (55)	5574.2 (47)	44.0 (0)	624.9 (5)	13898.1
zz_mid	8.5 (0)	0.0 (0)	0.9 (0)	0.0 (0)	11.6 (0)	66.0 (2)	0.0 (0)	481.8 (16)	287.2 (10)	0.0 (0)	53.3 (2)	909.5
zz_high	0.3 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.7 (0)	24.9 (3)	0.0 (0)	20.5 (3)	5.5 (1)	0.0 (0)	5.3 (1)	57.2
tautau_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	262.0 (3)	16.9 (0)	1424.8 (18)	3036.3 (37)	1649.3 (20)	213.1 (3)	0.0 (0)	6602.4
ZZ_high	51.7 (0)	1.2 (0)	2.1 (0)	0.0 (0)	20.9 (0)	8.9 (0)	4.5 (0)	9381.5 (81)	3711.6 (32)	159.8 (1)	176.0 (2)	13518.2
WW_high	0.3 (0)	0.4 (0)	0.3 (0)	0.0 (0)	14.6 (0)	0.3 (0)	4.7 (0)	186.3 (3)	2858.2 (52)	1.5 (0)	0.0 (0)	3066.6
ee_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	1.7 (0)	0.3 (0)	1.3 (0)	442.1 (2)	3982.4 (21)	33235.7 (171)	0.0 (0)	37663.5
tt_high	4.5 (1)	0.0 (0)	0.0 (0)	0.0 (0)	0.1 (0)	0.2 (0)	0.0 (0)	29.4 (3)	0.0 (0)	0.0 (0)	39.1 (5)	73.3
TOTAL	15734.6	769.5	1951.7	5.0	4691.2	528.6	1441.7	37778.2	26164.4	33657.3	2177.8	

Yields Z(vv) 240 GeV

Znunu_240(MCst.)		bb zh 0.34	cc 1.98	gg 0.99	ss 90.95	zz 10.40	ww 1.33	tautau 9.65	WW 0.05	ZZ 0.11	qqH 3.51	nuenueZ 0.90	Zqq 0.03
Expected vields (signifi	icance s/√tot) for	r Znunu at E = 24	10										
	bb	cc	gg	ss	ww		tautau	Zqq	ZZ	WW	qqH	nuenueZ	TOTAL
bb_low	60509.3 (140)	4.5 (0)	526.5 (1)	0.0 (0)	25.0 (0)	560.0 (1)	0.0 (0)	83920.1 (194)	34121.1 (79)	4846.2 (11)	1007.0 (2)	991.7 (2)	186511.4
bb_mid	52714.4 (181)	1.3 (0)	37.8 (0)	0.0 (0)	1.7 (0)	36.5 (0)	0.0 (0)	22393.8 (77)	8938.7 (31)	289.6 (1)	39.6 (0)	132.2 (0)	84585.6
bb_high	110492.3 (315)	0.9 (0)	10.1 (0)	0.0 (0)	0.0 (0)	6.4 (0)	0.0 (0)	8850.1 (25)	3524.9 (10)	34.7 (0)	4.4 (0)	11.7 (0)	122935.4
cc_low	155.7 (0)	2700.9 (8)	465.9 (1)	0.4 (0)	1107.1 (3)	316.0 (1)	0.0 (0)	39143.9 (115)	19785.1 (58)	51893.9 (152)	437.0 (1)	403.4 (1)	116409.2
cc_mid	48.4 (0)	3729.5 (23)	79.9 (0)	0.0 (0)	52.5 (0)	30.7 (0)	0.0 (0)	9766.2 (59)	7124.2 (43)	6265.0 (38)	23.0 (0)	51.2 (0)	27170.8
cc_high	8.5 (0)	5097.5 (53)	10.2 (0)	0.0 (0)	1.6 (0)	2.5 (0)	0.0 (0)	1606.0 (17)	1775.5 (19)	688.0 (7)	1.0 (0)	3.4 (0)	9194.3
gg_low	604.8 (4)	41.4 (0)	2857.4 (21)	2.8 (0)	1488.5 (11)	201.5 (1)	0.0 (0)	2375.1 (17)	2501.8 (18)	8615.4 (63)	160.7 (1)	20.8 (0)	18870.1
gg_mid	574.7 (3)	56.9 (0)	11036.6 (66)	3.8 (0)	1968.5 (12)	269.2 (2)	0.0 (0)	2550.4 (15)	3295.7 (20)	8279.2 (49)	180.4 (1)	14.9 (0)	28230.4
gg_high	56.7 (0)	10.3 (0)	15226.9 (115)	0.9 (0)	375.3 (3)	51.2 (0)	0.0 (0)	305.4 (2)	625.1 (5)	850.6 (6)	26.4 (0)	0.9 (0)	17529.6
ss_low	0.2 (0)	6.9 (0)	216.2 (3)	3.1 (0)	77.4 (1)	43.5 (1)	0.0 (0)	1244.1 (18)	1594.7 (23)	1723.6 (24)	28.6 (0)	14.0 (0)	4952.4
ss_mid	0.5 (0)	31.6 (0)	715.1 (5)	31.8 (0)	151.8 (1)	113.0 (1)	0.0 (0)	4354.3 (33)	7448.3 (57)	4397.8 (33)	63.4 (0)	68.5 (1)	17376.2
ss_high	0.0 (0)	6.4 (0)	88.0 (2)	52.2 (1)	5.2 (0)	6.6 (0)	0.0 (0)	345.0 (6)	2132.2 (40)	220.6 (4)	1.8 (0)	6.8 (0)	2864.9
ww_low	16.2 (0)	127.0 (0)	416.6 (1)	0.4 (0)	19173.3 (48)	405.5 (1)	0.0 (0)	1487.3 (4)	3619.5 (9)	131545.4 (332)	248.4 (1)	155.6 (0)	157195.2
ww_mid	0.2 (0)	3.4 (0)	9.7 (0)	0.0 (0)	3318.5 (43)	16.1 (0)	0.0 (0)	28.3 (0)	33.7 (0)	2406.9 (32)	5.2 (0)	0.0 (0)	5822.1
ww_high	0.0 (0)	0.0 (0)	0.1 (0)	0.0 (0)	65.6 (7)	0.1 (0)	0.0 (0)	0.0 (0)	0.8 (0)	17.1 (2)	0.0 (0)	0.0 (0)	83.7
zz_low	4198.3 (22)	68.6 (0)	425.4 (2)	0.9 (0)	1510.1 (8)	1409.8 (7)	0.0 (0)	2573.0 (13)	9751.4 (50)	15278.4 (78)	2643.9 (14)	50.1 (0)	37910.0
zz_mid	128.6 (4)	0.1 (0)	7.5 (0)	0.0 (0)	12.1 (0)	141.5 (4)	0.0 (0)	67.9 (2)	300.3 (9)	287.7 (9)	98.7 (3)	0.7 (0)	1045.0
zz_high	3.6 (1)	0.0 (0)	0.1 (0)	0.0 (0)	0.3 (0)	17.5 (3)	0.0 (0)	0.0 (0)	7.6 (1)	8.1 (1)	5.7 (1)	0.0 (0)	42.9
tautau_low	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.7 (0)	0.9 (0)	1192.5 (4)	39.6 (0)	6059.6 (18)	106285.1 (315)	2.0 (0)	205.2 (1)	113785.4
tautau_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.9 (0)	1.0 (0)	4539.9 (11)	0.0 (0)	7943.0 (20)	148073.4 (369)	0.0 (0)	346.6 (1)	160904.8
Zqq_high	1217.3 (0)	38.2 (0)	44.1 (0)	0.3 (0)	152.2 (0)	35.5 (0)	0.1 (0)	17777576.2 (418	2)119276.2 (28)	164808.2 (39)	238.1 (0)	6737.4 (2)	18070123.8
ZZ_high	2238.7 (1)	61.6 (0)	105.4 (0)	0.7 (0)	622.5 (0)	441.0 (0)	8.0 (0)	85916.4 (54)	2043266.7 (1278)	332103.7 (208)	2094.9 (1)	87660.8 (55)	2554520.3
WW_high	187.6 (0)	153.9 (0)	290.5 (0)	0.6 (0)	7510.4 (3)	219.0 (0)	137.1 (0)	89767.4 (32)	144427.3 (51)	7816174.1 (2752	2) 4265.5 (2)	2596.0 (1)	8065729.5
qqH_high	36.6 (0)	0.4 (0)	4.1 (0)	0.0 (0)	3.0 (0)	7.9 (0)	0.0 (0)	3251.6 (23)	7178.6 (50)	5115.3 (36)	4768.9 (33)	0.5 (0)	20367.0
nuenueZ_high	689.7 (1)	14.4 (0)	4.3 (0)	0.0 (0)	95.2 (0)	290.8 (1)	0.0 (0)	11932.0 (21)	228442.4 (411)	8719.0 (16)	282.0 (1)	58372.3 (105) 308842.2
TOTAL	233882.2	12155.7	32578.5	97.9	37719.3	4623.9	5877.6	18149494.0	2663174.3	8818927.2	16626.9	157844.9	

Categorization with background categories - Z(II) 240

note : Mee = ee + mumu bkg

Higgs/Top performance meeting 04/02/25 - Alexis Maloizel - Higgs hadronic couplings at FCC-ee

Categorization with background categories - Z(II) 365

note : Mee = ee + mumu bkg

Higgs/Top performance meeting 04/02/25 - Alexis Maloizel - Higgs hadronic couplings at FCC-ee

Categorization with background categories - Z(vv) 240

Higgs/Top performance meeting

Backup - Purity categories

For Zvv, all categories yield the best precision with 3 purity categories

Fitting strategy for all channels

Fitting using CMS tool CombineTF to extract σ .BR in each category

7 POIs, Hbb, Hcc, Hss, Hgg, Htt, HWW, HZZ (floating parameters)

Binning :

BNL: 1 GeV bin width (projected in 5 GeV for the recoil mass)

APC : custom binning *by-eye* (negligible/little improvement compared to 1 GeV width)

Empty categories removed from the fit

Rebinned such that :

There is at least one **expected** (sum of sig+bkg) event in each bin

Add 10-6 events in empty bins to help fit convergence, without implementing a bias

Monte Carlo stats uncertainties

No systematics on the backgrounds