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Introduction

• Accelerators are needed to probe high energy physics
• The LHC is the most advanced accelerator today

∘ Challenging to push further the parameters
∘ Optimizations require new methods
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Particle Trajectory

• All particles oscillate around the ring
• Number of transverse oscillations per turn is the tune: 𝑄𝑥 and 𝑄𝑦

∘ Fractional part is important! In the LHC around 0.28 and 0.31

• Trajectory is created by magnetics fields and can be disturbed
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Magnets and Optics
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• Linear elements

∘ Dipoles bend the particles
∘ Quadrupoles focus the beam and set the tune

• Non-Linear elements

∘ Sextupoles correct particles with a momentum-offset (𝛿, chromaticity)
∘ Octupoles correct tune change with large amplitudes (amp. detuning)
∘ Decapoles correct higher-orders chromaticity and amplitude detuning

Optics: a set of magnet strengths and the related observables
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Resonances
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• Resonances lead to unstable motion and increasing amplitudes

∘ Goal is to avoid, or at least minimize them

• Dynamic Aperture: amplitude particles can reach before being lost

∘ Can be measured with lifetime studies
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Resonance Driving Terms
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• RDT 𝑓𝑗𝑘𝑙𝑚: Coefficient linked to a resonance strength
• Example of 𝑓1004, from decapolar fields

∘ Excites resonance 1𝑄𝑥 − 4𝑄𝑦
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Field Errors

• Coils were measured during LHC’s construction

∘ A magnetic model for errors is then used for simulations
∘ Time dependent decay was also measured

• Efforts were done in the past to measure various orders

∘ Good understanding of linear and some non-linear errors
∘ High-orders only via indirect observables
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Thesis Work

High order fields might become problematic once we reach higher performances with

the next upgrade of the accelerator: HL-LHC.

• Magnetic error model of decapolar fields seems incomplete

∘ Understanding discrepency between simulations and measurements
∘ Correcting decapolar fields in operation

• Finding ways to measure higher orders and their impact

∘ Dodecapoles and decatetrapoles
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Magnetic Model Discrepancy
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• Corrections of 𝑄‴ based on magnetic measurements
∘ Model and measurements off by factor 2, but why?

• Possibles sources:
∘ Correctors response
∘ Magnetic model
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Checking the Correctors

• Octupolar and decapolar correctors turned off
• Model and measurements for 𝑄‴ are still factor ≈ 2 off
• Discrepancy still there despite various corrector configurations

→ Correctors do not cause the discrepancy
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Chromatic Amplitude Detuning
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• Different expression than 𝑄‴

• Factor ≈ 2 compared to simulations again
• First time ever measured in the LHC

→ Points to an error in our decapolar model, in the arcs
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Decay in Main Dipoles

Change of decapolar component in dipoles over time,
from Field Model documentation1

• Decapolar decay in the dipoles

was neglected 15 years ago

• Subsequently not integrated in

magnetic model

• Is actually quite large!

→ Average decapolar component halved in main dipoles!

Decay is important and needs to be considered

1https://lhc-div-mms.web.cern.ch/tests/MAG/Fidel/
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Implementation of Decay
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• Average decapolar decay substracted in simulations
• Most of the difference is now explained

∘ Both for 𝑄‴ and Chromatic Ampdet.

→ Discrepancy comes from our error model
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Measuring RDTs

• The beam is excited by an AC-Dipole

∘ Creates large coherent oscillations

• Quantities like RDTs require high amplitudes

∘ Can be challenging to attain due to forced dynamic aperture

→ Thanks to prior advancements, it is now possible to measure decapolar RDTs!
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Frequency Spectrum
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• Several lines are clearly visible

∘ AC-Dipole tunes
∘ Example of decapolar resonance at 4𝑄𝑦

• Resonance Driving Terms are linked to the line amplitude

∘ Normalized to the main line and then fitted over several measurements
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Measurement and Corrections

• Corrections based on a response matrix

∘ Retrieves the current needed to replicate measurement

• Simultaneous corrections of 𝑓1004, 𝑄‴ and chromatic amp.det.
• First correction of high-orders at injection
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Lifetime Impact of Corrections

• Clear improvement of lifetime with decapolar correction
• And deterioration with opposite trim

→ Gain of lifetime at injection energy of ≈ 3%
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Other Sources for RDT?
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• Weird behaviour of the RDT

∘ Amplitude seemed to vary every year, even with same configuration
∘ Additional octupolar corrections of 𝑄″ increased it

→ Corrections of 𝑄‴ not implemented in 2022
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Sextupolar and Octupolar Higher-Order Contributions

Via higher-orders of the transfer map, 𝑒∶ℎ1∶𝑒∶ℎ2∶ = 𝑒∶ℎ∶

ℎ =ℎ1 + ℎ2 ⇒ 1st order

+ 1
2

[ℎ1, ℎ2] ⇒ 2nd order

+ 1
12

[ℎ1, [ℎ1, ℎ2]]

− 1
12

[ℎ2, [ℎ1, ℎ2]] ⇒ 3rd order

+ ⋯ .

• 1st order → decapoles

• 2nd order → sextupoles and octupoles

• 3rd order → sextupoles together

→ Feed-up from sextupoles and octupoles contribute to decapolar RDTs

Actually never measured before in the LHC!
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RDT from Landau Octupoles

• Strong octupoles are used to introduce coherent instabilities damping
• But they increase this RDT by one order of magnitude!
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Landau Octupoles Impact on Lifetime
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• Artificially increased RDT to match expected decapolar impact of sextupoles

and octupoles
• Lifetime is negatively impacted by 10%

→ Considering higher-order effects is important
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Forced Dynamic Aperture
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• We now have a good understanding of interplay of fields
• Allows to implemented in operation the new corrections

∘ Octupolar (𝑏4) and decapolar (𝑏5)
∘ Forced Dynamic Aperture clearly improved

→ We can now kick higher with the AC-Dipole!
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Dodecapolar RDT 𝑓0060
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• First measurement made possible this Run

∘ Thanks to octupolar (𝑏4) and decapolar (𝑏5) corrections improving DA
∘ Never been possible before due to kick amplitudes

• Nice repeatability of measurements
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Dodecapolar RDT 𝑓0060
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• Dodecapoles (𝑏6) dominate

• Small impact of sextupoles

through decapoles (𝑏3 −𝑏5)

→ Our model is accurate for this dodecapolar RDT
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Chromaticity

0.002 0.000 0.002

0.260

0.265

0.270

0.275

0.280
Q

X

Q(3) fit
Q(5) fit
Measurement

→

0.004 0.002 0.000 0.002
0.250

0.255

0.260

0.265

0.270

0.275

0.280

Q
X

Q(5) fit
Measurement

𝑄(𝛿) = 𝑄0 + 𝑄′𝛿 + 1
2!

𝑄″𝛿2 + 1
3!

𝑄‴𝛿3 + 1
4!

𝑄(4)𝛿4 + 1
5!

𝑄(5)𝛿5
⏟⏟⏟⏟⏟⏟⏟⏟⏟

newly measured!

+ ⋯

• New measurement technique to increase scan range
• Refined tune cleaning via new processing methods

→ Clear effects of higher-order chromaticity
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Chromaticity
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• Decatetrapolar (𝑏7) decay

has an impact

• Some missing sources yet

to identify

→ Our model agrees relatively well!
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Conclusions

Progressed and achieved first measurements of higher-order fields!

• Decapolar

∘ Improved our understanding of decapolar fields and our model
∘ Forced DA improved by novel corrections
∘ First measurements and corrections of Chromatic Detuning and RDTs

• Dodecapolar

∘ First measurement of 𝑓0060 and benchmark of model

• Decatetrapolar

∘ Chromaticity measurements allow to probe up to Decatetrapole

→ Good first characterization of high orders in the LHC :)
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Conclusions

Thank you for your attention!
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