

ADEMY OF

Wide Bandgap – Wide Bandwith? Thoughts about multi-Ghz readouts for thin WBG sensors

Andreas Gsponer andreas.gsponer@oeaw.ac.at HEPHY 24th January 2024

CADEMY OF

Contents

- Theoretical background
- Design considerations for high-BW readouts
- Prototype results from HEPHY

Two Questions

1) For WBG sensors with higher drift velocities than silicon, what is the optimal readout for <u>optimal timing</u>?

2) If we want to apply <u>TCT to thin</u> (< 100 μ m) WBG sensors, how can we achieve the required readout bandwidths (irrespective of noise), in order to extract features such μ_{e} , μ_{h} ?

SNR vs Bandwidth

- For white noise, the SNR is constant with frequency, up to the detector signal frequency cutoff
- After the limit of detector bandwidth, the SNR drops below 1

 $P[A^2/Hz]$

Jitter vs Bandwidth

- Toy model for planar sensors, $v_e = v_h = v_{sat}$, see 2nd DRD3 Week
- In the limit of high frequencies, jitter is constant (rise time grows as fast as SNR is decreasing)

- In PIN devices : maximum current at t = 0
- For LGADs, maximum current after charge carrier drift to gain layer
- For 4H-SiC : n-type, hole multiplication
- P-LGAD : p-type, electron multiplication

CADEMY OF

WBG Readouts

Timing readout (2-3 GHz):

• Minimal noise

ADEMY OF

- Rather small, low-power components to allow for multi-channel readout
- Waveforms can be shaped or (optimally) filtered, waveform shape is irrelevant

TCT readout (> 5 GHz)

- Noise can be much higher (averaging laser signals, large charge depositions, i.e. alpha source)
- Single or a few channels (can use large, power-hungry components)
- Want constant gain and impedances up to multiple GHz to be able to reconstruct signal shape

ADEMY OF

Future Readouts

Timing readout (2-3 GHz):

- Minimal noise
- Rather small, low-power components to allow for multi-channel readout
- Waveforms can be shaped or (optimally) filtered, waveform shape is irrelevant

TCT readout (> 5 GHz)

- Noise can be much higher (averaging laser signals, large charge depositions, i.e. alpha source)
- Single or a few channels (can use large, power-hungry components)
- Want constant gain and impedances up to multiple GHz to be able to reconstruct signal shape

AUSTRIAN ACADEMY OF

High BW Readout Recipe

- Using discrete components not really feasible anymore, especially for feedback circuits (parasitics of SMD components)
- Move to MMIC (micro-wave monolothic integrated circuit) amplifiers / ASICs ?
- Keep impedance matched to 50Ω (or have input impedance < 50Ω ?)

- Minimize detector capacitance and parasitic capacitances
- Take care of AC return path (Vias, etc.)
- Use adequate PCB substrates (Rogers)
- Bondwires as short as possible (and multiple of them $1/L_{tot} = 1/L_1 + 1/L_2 + \dots$)

Challenge for WBG : Do all of this for high voltages (≥ 1kV)

(HV to full deplete sensors and to arrive a v_{sat})

AUSTRIAN ACADEMY OF SCIENCES

Readout Boards in the Community

- BFR840 based circuit introduced by SCIPP
- Widely used (Chubut board, 2-stage design at UZH)
- Other solutions : Galli amplifiers (FNAL 16ch), Cividec
- All optimized for < 2 GHz

UCSC LGAD board

BFR840L3RHESD Infineon Reference Design

BFR840 Based Readouts

- How far can we go with the BFR840?
- Transimpedance (i.e. gain) and BW determined by feedback resistor R14
- Simply reduce R₁₄ and get more BW (with worse SNR)?

UCSC Board Tests

• UCSC board with feedback $R_{14} = 82 \Omega$

AUSTRIAN

- 4H-SiC detector with C_{det}= 0.5 pF, UV-TCT with ~3 ps jitter
- Achieved 90 ps risetime!
- Eqv. BW = 3.9 GHz
- However, oscillations in signal, esp. for $R_{14} < 82 \Omega$
- Would need a more HF adequate design and HF resistors

- If the transistor feedback circuit is challenging at high frequencies, why not use an IC / MMIC?
- Treat as a 50 Ω black box

AUSTRIAN ACADEMY OF SCIENCES

• Wire-bond as directly as possible (bare dies available!)

2

28

26

24

22 (GAIN (dB)

18

16

14

0

GAIN vs. TEMPERATURE.

 $P_{IN} = -25 \text{ dBm}, V_{DD} = +6 \text{ V}$

FREQUENCY (GHz)

-45°C +25°C

+85°C

9 10

MMIC Prototype Circuit

ÖAW

AUSTRIAN ACADEMY OF

SCIENCES

MMIC-based prototype

- SiC sensor mounted on LNA board (RO4350B)
- Minicircuits LNA 50 Ω , stable gain up to 10 GHz, NF = 1.1 dB
- RC-bandwidth : 6.3 GHz

AUSTRIAN CADEMY OF

• Bondwires : 3x 2mm

ÖΔW

MMIC Prototype Results

- Very fresh results (few hours old)
- UV-TCT laser (370 nm)
- Risetime : 55 ps (~ 6.4 GHz BW)

AUSTRIAN

- Partially limited by laser pulse (45 ps FWHM)
- (Almost) no reflections!

WG6-SiC-LGAD Readout Discussion

- Try to extract v_e/v_h from voltage scans / alpha measurements
- Design new PCB to optimize bond wire length
- Test with different low-capacitance sensors (small area planar, pixels, 3D sensors)