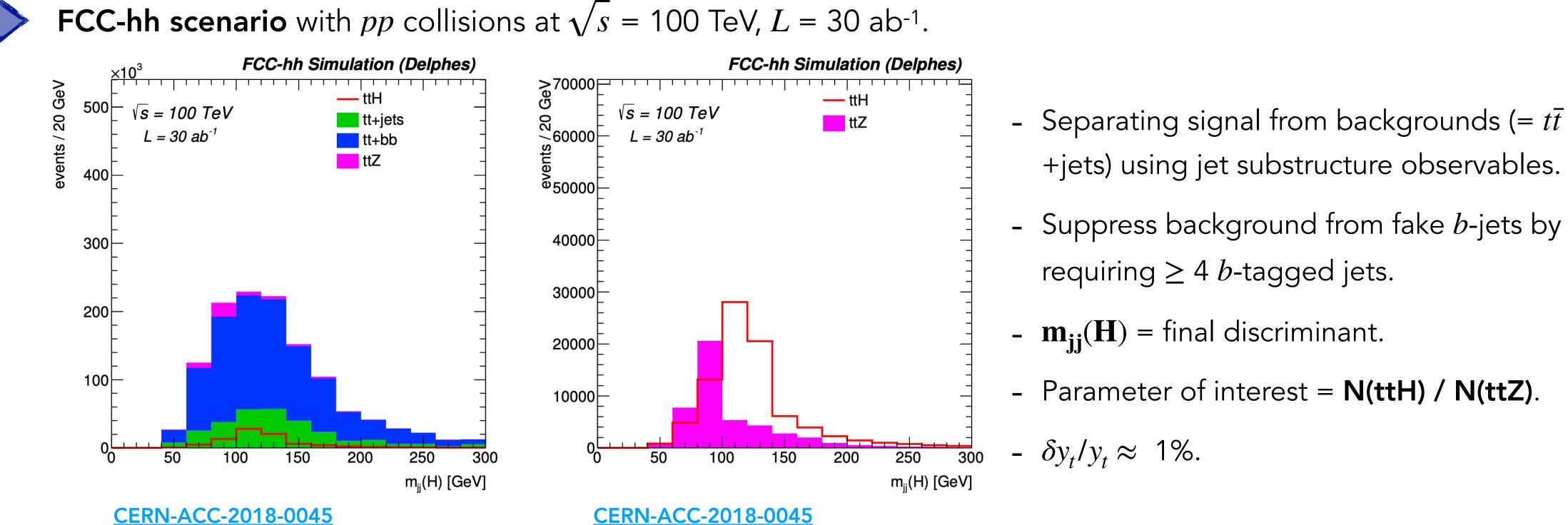
$ttH \rightarrow \gamma\gamma$ analysis: event selection and first fits

20 February 2025

Elena Mazzeo, Stefano Manzoni, Birgit Sylvia Stapf

FCC-hh:Physics & Performance meeting


2017-07-17 23:58:15 CEST

Outline

- $(= ttH \rightarrow \gamma \gamma).$
- much simpler handling of background samples).

20 February 2025

CERN-ACC-2018-0045

• We would like to target the **ttH production mode** @ FCC-hh at $\sqrt{s} = 84$ TeV, adding the **diphoton decay** of the Higgs boson

• We are considering (semi-)leptonic top quark decays: less statistics, but cleaner signature w.r.t. the hadronic channel (and

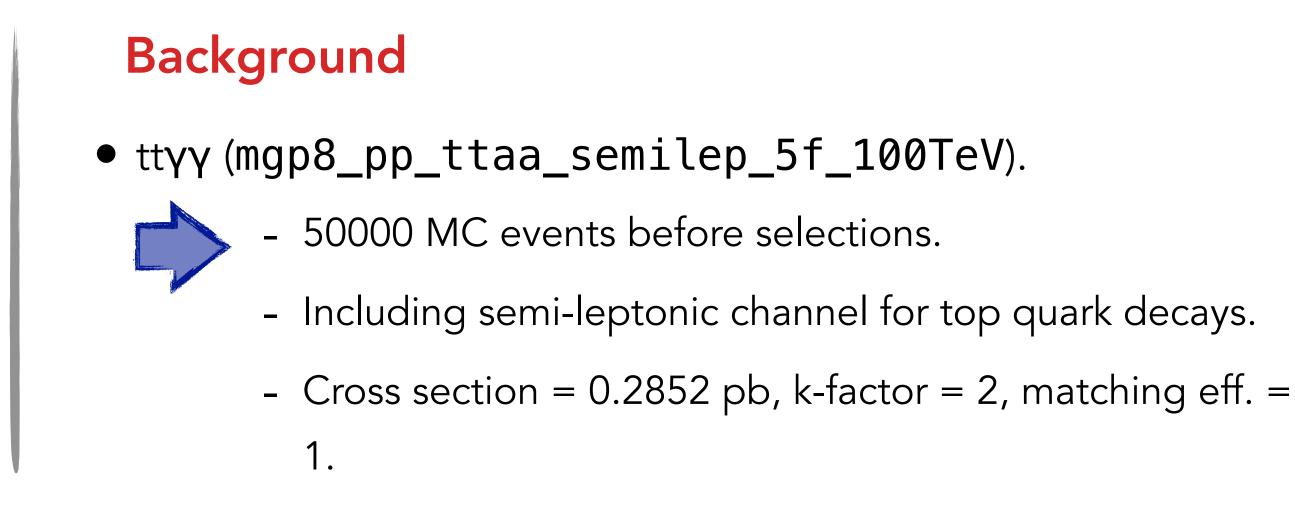
2

Signal and background samples

Signal

- $ttH \rightarrow \gamma\gamma$ (mgp8_pp_tth01j_5f_haa).
 - 306353 MC events before selections.
 - Inclusive in top quark decay.
 - Cross section(ttH) * BR(H $\rightarrow\gamma\gamma$) = 0.1018 pb, k-factor = 1.22, matching eff. = 0.613.

Some comments


- MC samples available for \sqrt{s} = 100 TeV, new samples at \sqrt{s} = 84 TeV will be produced.

- Plan to have a **dedicated Vyy + jets sample**!
- We could have an additional background from other processes, where (at least) one **photon** is a **fake**.

- factor to the $tt\gamma\gamma$ sample.
- Planning to check the background contributions from other $H \rightarrow \gamma \gamma$ processes (e.g. VH).

~100x larger w.r.t. LHC @ 13 TeV (= 0.5071 pb * 0.00227 = 0.00115 pb).

• We do not have yet the MC samples for modeling the contribution Vyy + jets background: we estimated that it amounts to ~30% of the **ttyy** contribution in our phase space, and, for now, we are covering this assigning an **additional k-factor** to the ttyy sample.

We estimated that it amounts to ~50% of the ttγγ background, and we are accounting for it by applying an additional 1.5 k-

3

 $ttH \rightarrow \gamma \gamma$ analysis: event selection and first fits

Event selection

• Photon selection

- At least two photons with \mathbf{p}_{T} > 25 GeV (see Delphes <code>parametrisation</code> of photon selection efficiency).
- $p_T(\gamma_1)/m_{\gamma\gamma} > 0.35$ and $p_T(\gamma_2)/m_{\gamma\gamma} > 0.25$.
- $105 < m_{\gamma\gamma} < 160$ GeV.
- b-jet selection

- At least two b-jets with $p_{
 m T}$ > 25 GeV passing Medium b-tagging requirements (see Delphes parametrisation of btagging efficiency).
- Lepton selection

- At least one electron or muon with $p_{
m T}$ > 15 GeV (see Delphes parametrisations of electron and muon efficiency).

• p_T(H) binning

Dropped photon isolation requirement for now, since it caused an unexpectedly low photon efficiency.

To investigate.

TtH $\rightarrow\gamma\gamma$ analysis: event selection and first fits

Expected yields and efficiencies

Expected yields

	$ttH o \gamma\gamma$	$tt\gamma\gamma$
Selection		
All events	2.283668e+06	1.711200e+07
\geq 2 photons	1.306010e+06	7.466238e+06
Rel. p_T cuts	1.084243e+06	4.989717e+06
105 < $m_{\gamma\gamma}$ < 160 GeV	7.384012e+05	2.251650e+06
\geq 2 b-jets	4.588242e+05	1.221150e+06
\geq 1 lepton	1.259919e+05	6.430889e+05

- As a first step, we have a look at the expected yields and the efficiency for each selection requirement.
- but we also have a photon $\mathbf{p}_{\mathbf{T}}$ cut.

	•	•	
Effi	cie	nci	es

	$ttH o \gamma\gamma$	$tt\gamma\gamma$
Selection		
All events	1.000000	1.000000
\geq 2 photons	0.571891	0.436316
Rel. p_T cuts	0.474782	0.291592
105 < $m_{\gamma\gamma}$ < 160 GeV	0.323340	0.131583
\geq 2 b-jets	0.200915	0.071362
\geq 1 lepton	0.055171	0.037581

• The single photon efficiency (~66% - 75%) is a bit lower w.r.t. the maximum photon efficiency from the Delphes card (~95%),

• The efficiency for the full diphoton selection (~32%) is very similar to the efficiency obtained from the ATLAS ttH $\rightarrow\gamma\gamma$ analysis! • The single b-jet efficiency (~75%) seems consistent w.r.t. the medium b-tagging efficiency in the Delphes parametrisations.

 $ttH \rightarrow \gamma \gamma$ analysis: event selection and first fits

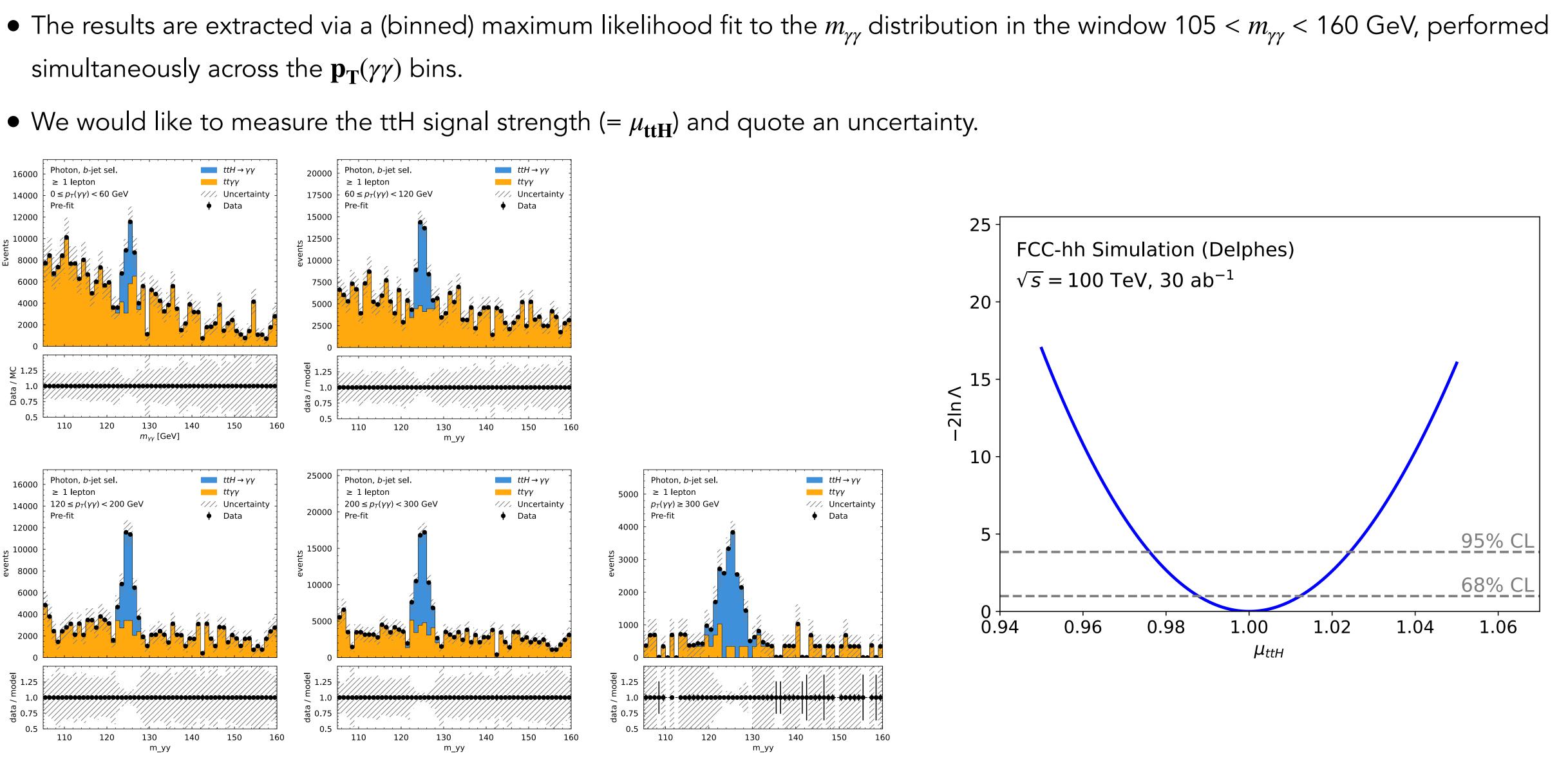
Expected yields and efficiencies

Expected yields

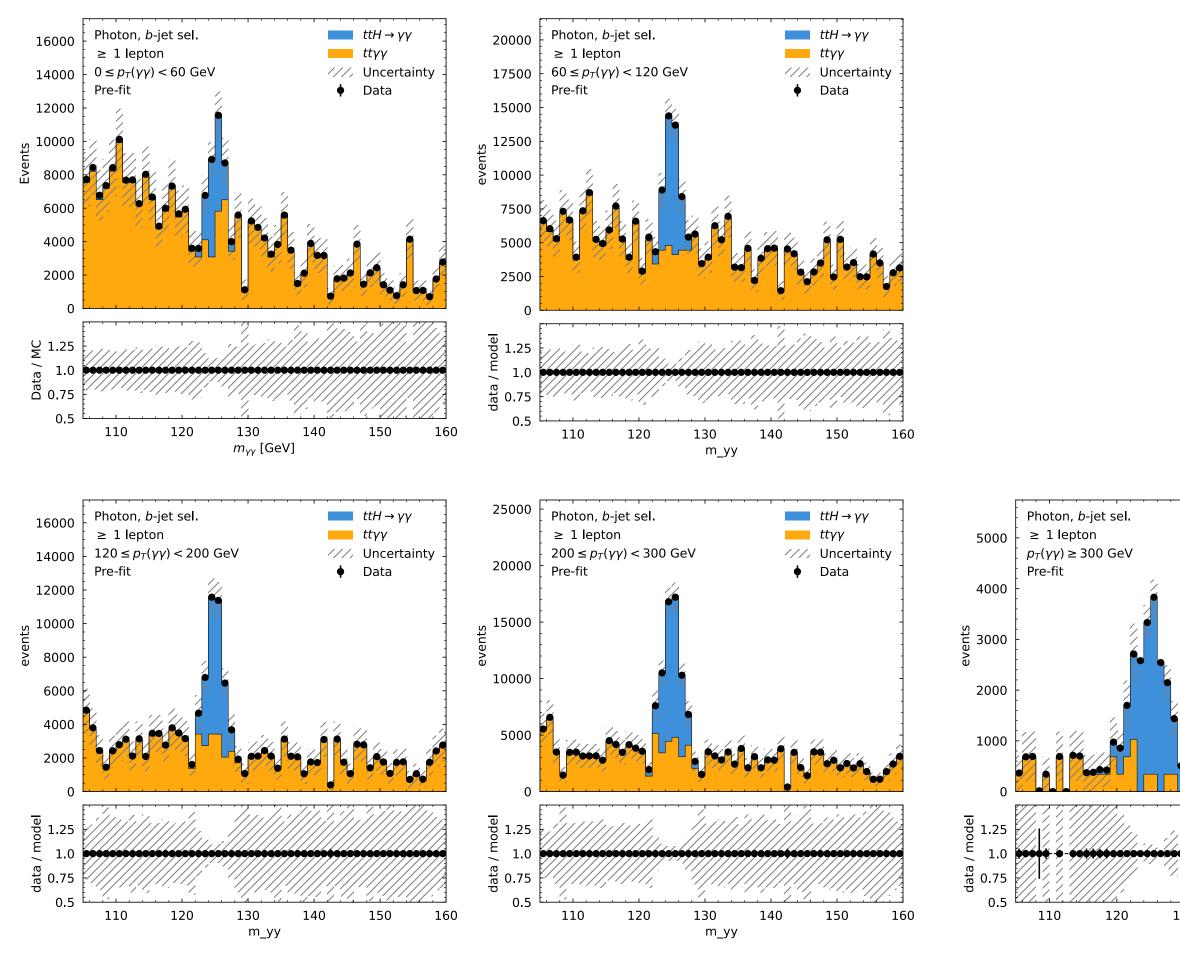
	$ttH o \gamma\gamma$	$tt\gamma\gamma$
Selection		
All events	2.283668e+06	1.711200e+07
Photon and b -jet sel., \geq 1 lepton	1.259919e+05	6.430889e+05
0 $\leq p_T(\gamma\gamma)$ < 60 GeV	2.292593e+04	2.228106e+05
60 $\leq p_T(\gamma\gamma)$ < 120 GeV	3.508599e+04	2.388932e+05
120 $\leq p_T(\gamma\gamma)$ < 200 GeV	2.961359e+04	1.242280e+05
200 $\leq p_T(\gamma\gamma)$ < 300 GeV	4.837184e+04	1.629025e+05
$p_T(\gamma\gamma) \geq$ 300 GeV	1.960819e+04	1.848251e+04

• The boosted $\mathbf{p}_{T}(\gamma\gamma)$ bins have much lower signal efficiency, but S / B ratio seems to improve (close to 1 for $\mathbf{p}_{T}(\gamma\gamma)$ > 300 GeV).

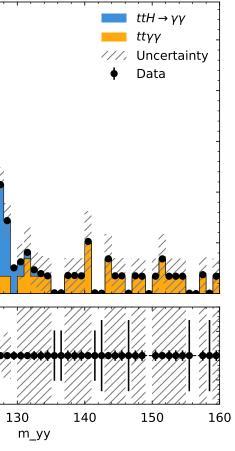
Efficiencies


	$ttH o \gamma\gamma$	$tt\gamma\gamma$
Selection		
All events	1.000000	1.000000
Photon and b -jet sel., \geq 1 lepton	0.055171	0.037581
0 $\leq p_T(\gamma\gamma)$ < 60 GeV	0.010039	0.013021
60 $\leq p_T(\gamma\gamma)$ < 120 GeV	0.015364	0.013961
120 $\leq p_T(\gamma\gamma)$ < 200 GeV	0.012968	0.007260
200 $\leq p_T(\gamma\gamma)$ < 300 GeV	0.021182	0.009520
$p_T(\gamma\gamma) \geq$ 300 GeV	0.008586	0.001080

Fit strategy


- simultaneously across the $\mathbf{p}_{\mathbf{T}}(\gamma\gamma)$ bins.

Fit strategy


- simultaneously across the $\mathbf{p}_{\mathbf{T}}(\gamma\gamma)$ bins.
- We would like to measure the ttH signal strength (= μ_{ttH}) and quote an uncertainty.

• The results are extracted via a (binned) maximum likelihood fit to the $m_{\gamma\gamma}$ distribution in the window 105 < $m_{\gamma\gamma}$ < 160 GeV, performed

• μ (**ttH**) = 1.0000 +/- (-0.0123, +0.0124).

• Precision on $\mu(ttH)$ reaching almost 1.2%.

Summary

• We would like to explore the $ttH \rightarrow \gamma\gamma$ analysis @ FCC-hh

- Following the **ttH→bb analysis** in <u>CERN-ACC-2018-0045</u>.
- We are targeting the (semi-)leptonic channel for the top quark decay.

- Smaller signal efficiency (we loose ~50% of ttH $\rightarrow\gamma\gamma$ events), but final state is cleaner and bkg. is easier to control.
- We have started to look at the available signal (**ttH** \rightarrow **yy**) and background (**ttyy**) samples. We thought about additional sources of backgrounds (e.g. V**yy+jets, fake photons contributions, single Higgs backgrounds**) and tried to make a plan on how to account for them.
- We have applied an event selection, targeting the **yy+bb+leptons** final state.
- We split the selected events into mutually exclusive categories, defined using $p_T(\gamma\gamma)$.
- We adopt $m_{\gamma\gamma}$ as the final observable, and extract the results via a binned maximum likelihood fit to the $m_{\gamma\gamma}$ distribution. μ (**ttH**) = 1.0000 +/- (-0.0123, +0.0124)

at
$$\sqrt{s} = 84$$
 TeV.

TtH $\rightarrow\gamma\gamma$ analysis: event selection and first fits

Outlook

- What's next?
- We would like to increase the statistics of our available signal and background samples.
 - ttγγ).
 - 50 the tt $\gamma\gamma$ sample, reaching 2.5 M events.
- We plan to check the contribution of backgrounds from other Higgs boson production modes.
- signal and background).
- timescale).

- After the event selection, the number of entries in our MC samples is quite low (~16k for ttH $\rightarrow\gamma\gamma$ and ~2k for

- Given that we are further splitting the selected events in categories, we would like to increase the stats. of a factor 5 for ttH $\rightarrow\gamma\gamma$ (considering only the semi-leptonic top quark decays, i.e. 1.5 M events), and of a factor of

- For the background, we could increase the efficiency by reducing the width of the $m_{\gamma\gamma}$ window.

• We would like to have a dedicated sample for the (subdominant) irreducible background from $V\gamma\gamma$ + jets events.

• See if there is room to still improve the sensitivity of this analysis (considering using a BDT to separate between

• Try to measure the ratio $\mu(ttH)/\mu(ttZ)$, from applying the same analysis strategy to the ttZ→ee process (on a longer

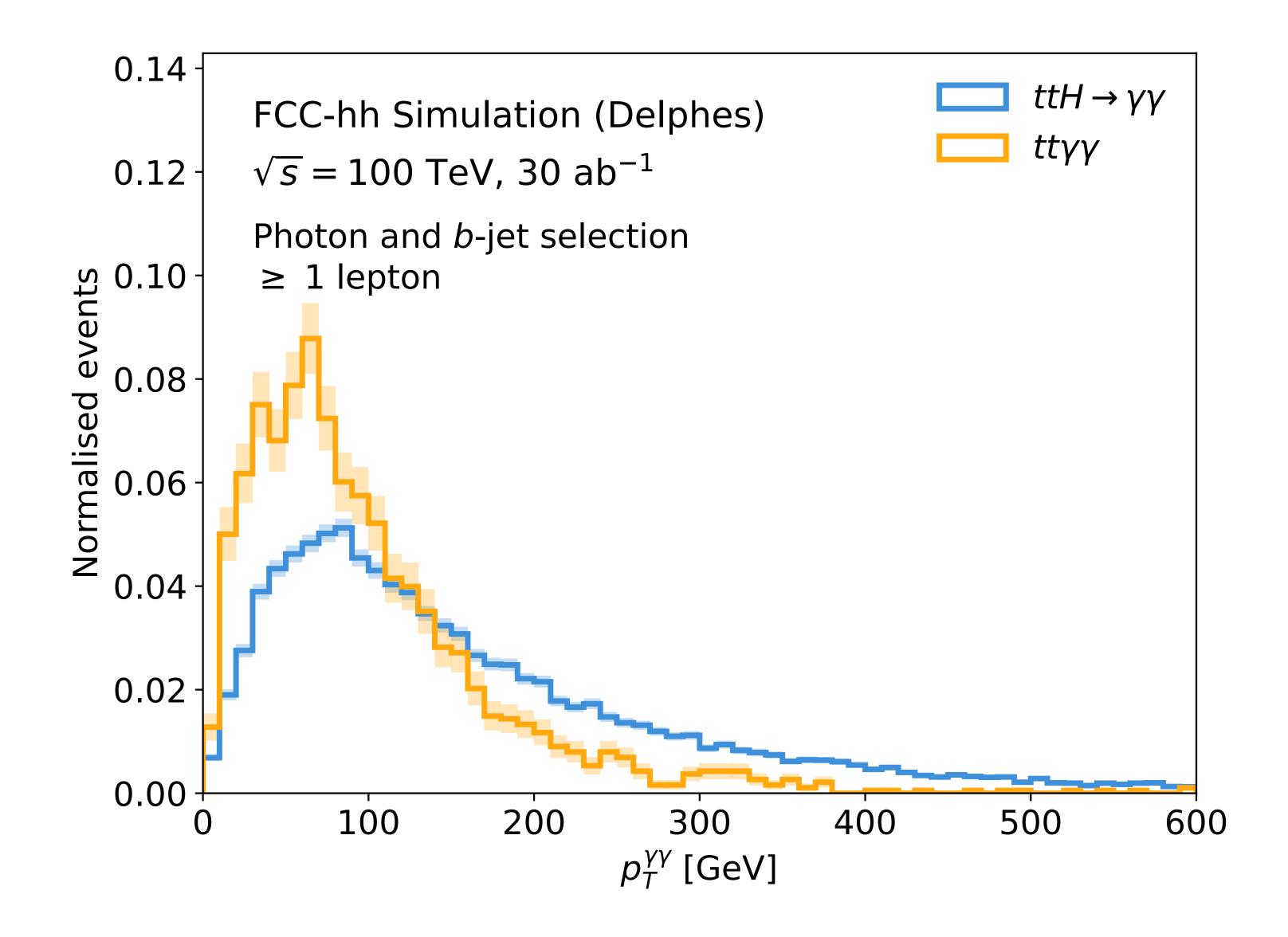
 $TtH \rightarrow \gamma \gamma$ analysis: event selection and first fits

Thank you for your attention

MC statistics

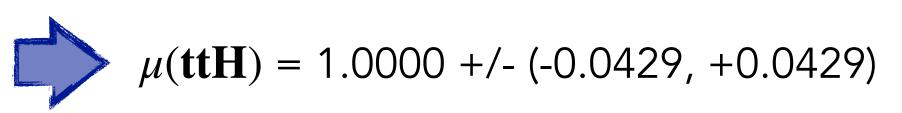
Cutflow

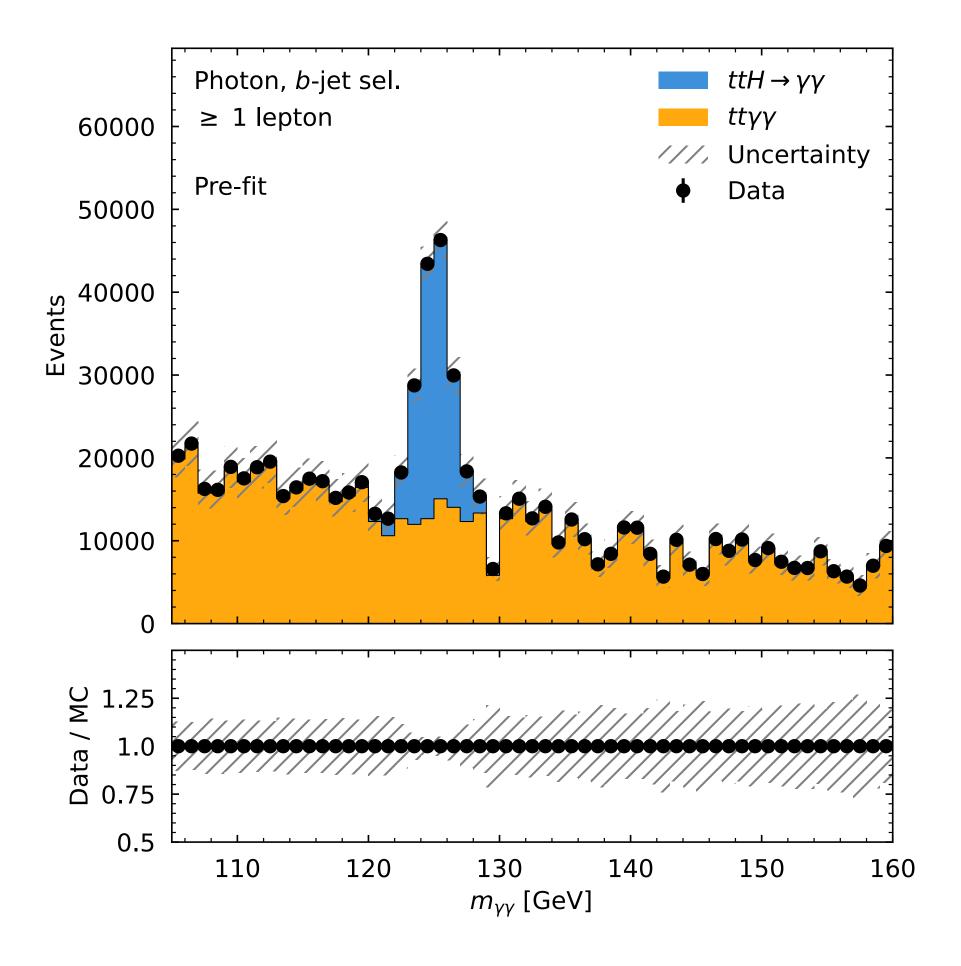
Analysis categories


 $ttH
ightarrow \gamma\gamma ~~tt\gamma\gamma$

Selection		
All events	306353	50000
\geq 2 photons	175194	21815
Rel. p_T cuts	145445	14579
105 < $m_{\gamma\gamma}$ < 160 GeV	99050	6579
> 2 b-jets	61545	3568
<pre>> 1 lepton</pre>	16901	1879

 $ttH
ightarrow \gamma\gamma ~~tt\gamma\gamma$


p_T(yy) distribution



Inclusive analysis

• We tried to repeat the analysis, without splitting the selected events into $\mathbf{p}_{\mathbf{T}}(\gamma\gamma)$ bins.

