

ALICE feedback on Analysis Facilities

L. Betev

WLCG OTF #3, February 11, 2025

Scope of this presentation

- Guided by the WLCG referees <u>questions</u> on analysis infrastructure
 - Not discussing point 1 (Description of the current Run-3 analysis model) and point 2 (Future analysis model in Run-4 and Run-5) - these are extensively covered in the <u>ALICE upgrade TDR</u> and elsewhere
- Focus on point 3 (Managing the evolution of the Analysis Infrastructure)
 - ALICE approach to Analysis Facilities
 - Operation and future plans
 - In the hope this may help and inspire...

Quick recap of ALICE Analysis Facilities vision

- Integral part of the ALICE computing model for Run3+
 Bulk of data analysis through organized analysis trains on Grid
 - Final steps on physicist laptop/workstation
- Basic architectural considerations
 - Dedicated location with comprehensive data samples from asynchronous and MC data processing at ~10% statistics
 - Fast I/O, ~15MB/s/core, total of ~10kcores, ~10PB of storage capacity
 - Predictability of analysis turnover
 - Leverage existing Grid sites and middleware
 - Easy functional expansion to include different computing elements, for example accelerators

AF implementation

- Identify AF suitable computing facilities
 - Enthusiastic local support highly visible part of the analysis system, downtimes are undesirable
 - Adequate internal site structure fast interconnect between SE and WNs
 - Good WAN connectivity for data transfers
 - Compatibility with Grid operation
 - 3 T2s identified for full or partial conversion to AF
 - GSI Darmstadt (GreenCube), KFKI Budapest (Wigner Scientific Computing Lab), LBNL Berkeley (HPC systems)
- Choice of these T2s is not coincidental
 - Full compatibility with architectural requirements for storage, compute size and connectivity
 - Already existing centres with proven operational record
 - Added bonus lower energy footprint

AF use cases sample

- Develop and tune analysis algorithms rapidly using a data subset
 - \circ $\,$ Scale the analysis to the full dataset on the Grid using the same software
- Perform initial data exploration and low-statistics analysis
- Conduct detector calibration
 - Leveraging the suitability for specific datasets and the need for fast turnaround
- Ensure seamless transition between AF and Grid
 - Both run the same O2 code, guaranteed consistent execution across all types of resources

Hyperloop system

- Facilitates the organisation and execution of all large-scale analysis in ALICE
- Fully integrated with jAliEn workload management and MonALISA
- Individual physics tasks are organized into wagons
 - Wagons are assembled onto trains to run over the same dataset (minimize I/O, maximise efficiency)
 - Operates on daily builds of O2Physics code, distributed through CVMFS

- Hyperloop offers
 - Advanced web interface with user and operator views
 - Immediate and automatic wagon test
 - Automatic train submission under certain defined conditions
 - Wagon and dataset bookkeeping

Role of AF

- Organized analysis runs on Grid or AF, depending on the dataset
 - Daily O2Phsyics builds, trains typically start later afternoon, results ready overnight
 - Analysis trains can run at any time, for example these which differ only by applied cuts

AF operation

- AFs are in operation since 3 years
- Execute analysis jobs with priority
 - If free resources are available - backfill with normal Grid payload
- Targeted distribution of datasets
 - Sites receive specific datasets, depending on availability of space

Challenges and future work

- Data management per AF
 - Current dataset placement relies solely on space availability
 - This may result in excessive data movement over long distances
 - Implement a data proximity/throughput based system to optimize AF storage transfers
 - Develop a popularity service for automatic dataset removal
 - Explore and experiment with new storage technologies (if available)
- Consider the use of alternative resources
 - Deploy GPUs at one of the AFs in Europe
 - Leverage existing payload matching/container systems
- Hyperloop development
 - Organized analysis is tightly coupled with AF usage
 - Maintain continuous development to incorporate new use cases, improve the control system