Nb₃Sn/Cu - Status and perspectives

Valentin Giglia

TE-VSC-SCC

TE-VSC Seminar – 18th March 2024

Outline

- Introduction: Why Nb₃Sn
- Nb₃Sn on small sample for development
- QPR for fine tuning
- Towards first cavity depositions
- Conclusion

Superconducting Radio Frequency (SRF) Cavities

- Accelerate charged particles
 - Electromagnetic standing wave
 - Force applied to charged particle
- Bulk Nb
- Nb/Cu (LHC, ISOLDE):
 - Cu = high thermal conductivity
 - Lower load on cooling system

SRF Cavity Performance

- Quality factor $Q = \frac{\text{stored power}}{\text{dissipated power}}$
- Dissipated power proportional to R_s
- $Rs \bowtie with T_c \nearrow \rightarrow Good indicator!$

How Nb₃Sn compares to Nb?

- Q_0 at 4.5 K ~ bulk Nb at 2 K
- Better overall performances

	Nb	Nb ₃ Sn
Tc (K)	9.2	18.3
R_{BCS} (n Ω)	45	0.4
H _{sh} (mT) @4.2K and 500MHz	220	425
Max th. Eacc (MV/m)	50	100

How this is interesting for accelerators?

- For FCC: bulk Nb cavities for booster operations
- Could operate at 4.5K instead of 2K + Use of Cu substrate
- Energy and cost savings for future colliders

Some challenges for Nb₃Sn dev:

- Very narrowed region in phase diagram
- Requires high temperature process
- Composition is crucial to ensure high perf.
 - Optimal Sn content 25 At.%
- Perf. are hindered by mechanical stress

Outline

- Introduction: Why Nb₃Sn
- Nb₃Sn on small sample for development
- QPR for fine tuning
- Towards first cavity depositions
- Conclusion

Surface preparation:

- SUBU (chemical polishing)
- EP (Electro polishing)
- PEP (Plasma electro polishing)

Coating process Bi-Polar HiPIMS:

- Samples mounted on T-regulated, rotative support
- Two steps coating
 - 1St dep: Ta barrier*
 - 2nd dep: Nb₃Sn layer

High Power Impulse Magnetron sputtering:

- High power density during short pulses
- Advantages for thin films:
 - Higher plasma ionisation
 - Higher film density
- Bi-Polar for Nb₃Sn devs:
 - Both negative and positive pulses
 - PP pushes charged species towards the sample
 - Even higher film density

C.P.A Carlos et al. FCC week 2022

High Power Impulse Magnetron sputtering:

- High power density during short pulses
- Advantages for thin films:
 - Higher plasma ionisation
 - Higher film density
- Bi-Polar for Nb_3Sn devs:
 - Both negative and positive pulses
 - PP pushes charged species towards the sample
 - Even higher film density

Extensive ongoing study (started by S. Leith):

Nb ₃ Sn	Range explored	Best results
Gaz	Kr	Kr
Temperature (∘C)	[500,750]	750
Pressure (mBar)	$[7.10^{-4}, 5.10^{-2}]$	$[8.10^{-3}, 2.10^{-2}]$
Positive Pulse (V)	[35,130]	50
Annealing (hrs)	[0,72]	24

Best results on small samples:

- Tc is capped at 16K
- First order impact of mechanical stress
 (Different CTE between Cu and Nb₃Sn)

Demonstration:

- Same coating recipe on different substrates
- Tc ¬ when CTE becomes closer to Nb₃Sn
- Total improvement = 2K

A promising solution:

- Changing Cu substrate for CuW
- First coating in characterization now

Outline

- Introduction: Why Nb₃Sn
- Nb₃Sn on small sample for development
- QPR for fine tuning

- Towards first cavity depositions
- Conclusion

QPR = Quadrupole resonator:

- Flat object as close as possible to a cavity

- For thin films RF characterization

- Allows to quantify Rs

Heating element

- Significant improvements these past 2 years
- Rs 2-3 times lower for Nb₃Sn vs Nb !!!!

Comparison with Nb/Cu layers:

- Significant improvements these past 2 years
- Rs 2-3 times lower for Nb₃Sn vs Nb!!!!

Extrapolation to cavity:

- Better performance than Nb/Cu cavities
- On the right way towards FCC requirements

Constant dev to even higher perfs:

- Substrate material and preparation
- Coating adjustments

First validation for cavity application

Outline

- Introduction: Why Nb₃Sn
- Nb₃Sn on small sample for development
- QPR for fine tuning
- Towards first cavity depositions
- Conclusion

Towards cavity coating: Requirements

High temperature deposition (750C):

- Requires large furnace
- Cu cavities must be upgraded:
 - Increased cavity thickness
 - Rigid support structure inside the furnace?
 - Alternative materials?

Towards cavity coating: Requirements

High temperature deposition (750C):

- Requires large furnace
- Cu cavities must be upgraded:
 - Increased cavity thickness
 - Rigid support structure inside the furnace?
 - Alternative materials?

Nb₃Sn target ideal geometry:

- Hollow and cylindrical (like Nb or Ta targets)
- Advantages:
 - Use our long-term experience
 - Allows for vertical coating
 - Avoid cavity rotation required by flat target

Towards cavity coating: Limitation

Nb3Sn target specifications:

- Alloyed target
- Limitation to 2 targets:
 - One for diffusion barrier layer
 - One for Nb₃Sn

Nb3Sn target undesired properties:

- Fragile and prompt to cracking
- Dust creation
- Not compatible with cylindrical shapes

Root cause identification:

- Thermal cycles, power ramp rate, max power
- The cracking is unavoidable

10 Coatings

Towards cavity coating: Solution

Most promising solution:

- Bonding on backing plate
- BP made of CuW (same CTE as Nb₃Sn)

First tests on small target:

- **Positive** on Ø 20mm target
- Ongoing for Ø 50mm target (then 150mm)

New magnetron design:

- Grounded magnet and dark space shields
- Cooling liquid bath for:
 - Magnet
 - Target through BP

V. Sibue and M. Crouvizier (EN-MME)

Conclusions

Big improvements have been made with the Nb₃Sn/Cu technology:

- Confirmation of Nb₃Sn coating repeatability
- RF performances higher than Nb/cu cavities
- Very promising for FCC

First cavity coating system designs:

- Nb₃Sn bonding on CuW is very promising to mitigate target breaking
- Allows for polyedric target → deposition system as close as possible to well known settings

Future developments:

- Complete target survival tests with larger targets
- Studies on QPR:
 - Coating improvements
 - Flux trap, thermal gradient effect
- Nb₃Sn coating on CuW

Thank you for your attention