DRD8: Cooling

On behalf of the DRD8 collaborators

IMPLEMENTING DRD8:

AN R&D COLLABORATION ON Mechanics & Cooling of Future Vertex and Tracking Systems

Oscar Augusto de Aguiar Francisco (The University of Manchester)

oscar.augusto@cern.ch

Bart Veerlat (CERN)

verlaat@cern.ch

Project Name	Project/Task: New cooling fluids and systems (WG 8.3)		
Project	Cold detector cooling using Krypton as a new refrigerant		
Description			
Innova-	Exploration of a new cooling domain using a natural refrigerant in a novel cycle		
tive/strategic			
vision			
Performance	Cooling detector structures with high dissipation in the temperature domain		
Target	between -90 °C and -50 °C		
Contributors	tributors CERN, NTNU-Trondheim, Companies		
	 Norway – NTNU - Trondheim - Armin.Hafner@ntnu.no Switzerland- CERN – Bart.Verlaat@cern.ch 		

Latest update (LHCb VELO U2 Workshop)

*to be included

Project	Warm and supercritical CO_2		
Description	Operation of ${\rm CO_2}$ at warm temperature (reduced pressure) and at supercritical single-phase (${\rm sCO_2}$)		
Innovative/Strat egic vision	provide precision measurements of thermal-fluidic properties of sCO_2 in the range of temperatures of interest for possible ultralight future detectors operating in environments with low radiation levels		
Performance target	Theoretical and experimental study of thermal and fluidic behaviour of ${ m sCO}_2$ flowing in small pipes/microchannels, heat exchangers design and operation optimization, Reliable performance prediction, study the passage from sub- to supercritical		
Contributors	CERN		

DRD8.3: Microchannels

Project Name	Project/Task: Microchannels cooling substrates		
Contact needle	Oscar Augusto de Aguiar Francisco		
Contact people	(oscar.augusto@manchester.ac.uk)		
	Miguel Ullán (miguel.ullan@csic.es)		
	Julien Cogan (cogan@cppm.in2p3.fr)		
	Development of the next generation of		
Dwainat	microchannels cooling structures envisaging		
Project	cost-reduction, better electronics integration,		
Description	different materials and/or manufacturing		
	techniques.		
Innova-	Ratter integration of electronics (sensor and/or		
tive/strategic	Better integration of electronics (sensor and/or		
vision	frontend electronics) and/or cost reduction		
	Explore the cooling parameter space of low		
	material budget (down to $\leq 0.2 \% X_0$) and low		
Performance	power dissipation (\sim 10-100 mW/cm ²) and high		
Target	power dissipation ($\sim 2\text{W/cm}^2$. The progress will be		
	tracked via public reports through presentations,		
	public notes and/or papers.		

Silicon microchannels

- CMOS compatible process (CNM)
- Thermocompression ("Hyperbar", CPPM)

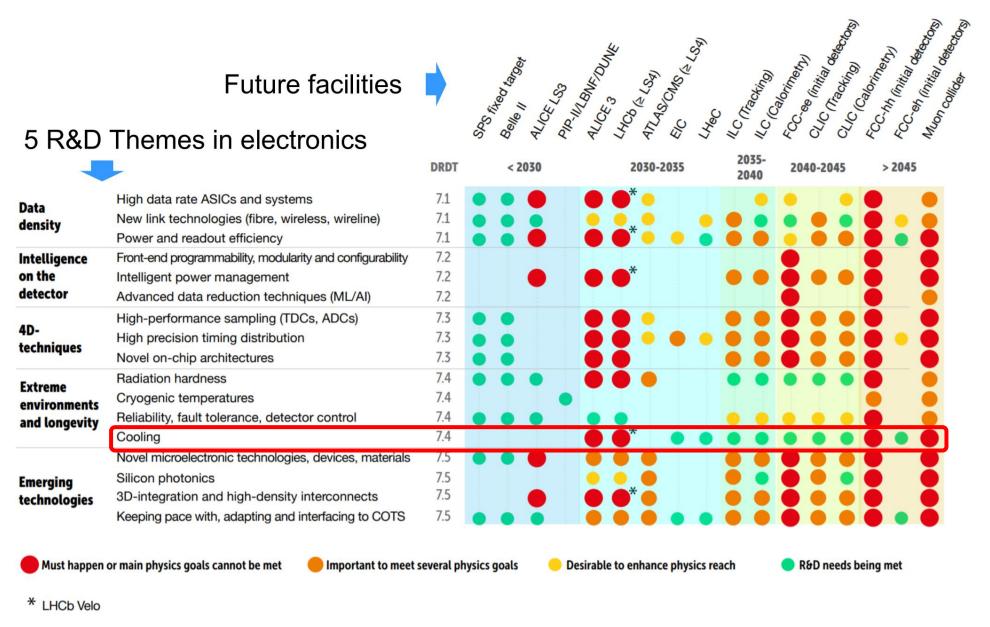
Ceramics

• LTCC/HTCC (UoM)

3D printing

Metal (UoM)

Available systems


Location	System	Capacity	Description
153	Primary System A	70kW @ -53°C	A primary CO2 refrigeration system
			with oil lubrication
153	Lucasz	2kW @ -30'C	User friendly oil free CO2 I-2PACL
			station
153	Traci	400W @ -25'C	User friendly mobile oil free CO2
			I-2PACL station
153	CORA	2kW @ -25'C	Early prototype cooling machine,
			possible upgrade to cold
			temperatures
2175/	DEMO inheritance	65kW @ -45'C	Former DEMO cooling system used
3584	DEMO IIIICITANCE	03KW @ -43 C	for phase-2 detector construction
186	CMS TIF	14 kW @ -35'C	CMS tracker development for phase
			1 and 2
180	ATLAS Baby-DEMO	6kW @ -40'C	ATLAS cold RnD system for phase
			2 upgrade

DRD8.3: Plans

- Common meetings
 - Share ideas which can be useful to the community
 - Every 2 months
 - Critical developments take time
 - First one by the end of February
- Krypton and CO2
 - Krypton System at CERN by (next week)
 - Explore supercritical and 2-phase area (coming months)
 - System ready to be tested with samples (summer?)
 - New PhD starting in April
 - DORIN: Oil free compressor before the end of the year
 - New partner interested to develop a freezer (this year)
 - Commercial demonstrator

- Ceramics:
 - Initial cooling tests with CO2
 - Potential to share test with the Krypton set-up well (summer?)
 - New production being organized @ CERN
- 3D metal printing:
 - New samples: $1 \mathrm{mm}^2$ cross section visually good and not blocked
 - Samples submitted to welding/brazing tests
 - Samples with 250um wall thickness will be high pressure tested
- Silicon microchannels:
 - CPPM:
 - Impact of selective metallization on high pressure tests (TBC)
 - More information <u>here</u>
 - CNM:
 - Activities ramping after hiring a new engineer

Backup slides

^{25/09/2024}