# January 28<sup>th</sup>, 2025

# N. Bartosik (a, b) for the Muon Collider Physics and Detector Group

(a) Università Piemonte Orientale (Italy) (b) INFN Torino (Italy)











material in a single layer: •

active sensor

50 µm of Si

~0.05% X<sub>0</sub>

### Nazar Bartosik



passive material

## 140 µm of Si

~0.14% X<sub>0</sub>





material in a single layer: •

active sensor

50 µm of Si

~0.05% X<sub>0</sub>

# consistent with the sensor technologies we are considering: LGAD, RSD, MAPS



## Vertex Detector material budget in MuSIC geometry

## Nazar Bartosik

# Current layout

passive material

## 140 µm of Si

~0.14% X<sub>0</sub>







material in a single layer: •

active sensor

50 µm of Si

~0.05% X<sub>0</sub>

### Nazar Bartosik



passive material

140 µm of Si

~0.14% X<sub>0</sub>

this comes from the CLIC design NOT what we plan to use





material in a single layer:

active sensor

50 µm of Si

~0.05% X<sub>0</sub>

Actual amount of passive material defined by the technology **Considering two extremes:** (no dedicated cooling)

- classical scheme (chip + HDI + support): 1% X<sub>0</sub> taken from CMS HL-LHC pixel tracker ullet
- **monolithic scheme:** 0.19% X<sub>0</sub> *taken from CEPC MIMOSA prototype*

## Nazar Bartosik

# Current layout



~0.14% X<sub>0</sub>

this comes from the CLIC design NOT what we plan to use



# Secondary BIB

# BIB interacting with the tracker material contributes a lot to the occupancy by producing secondary low-momentum e<sup>±</sup> particles



## Nazar Bartosik

| 3%   | e <sup>±</sup> (prim.): 2% | 6 e <sup>±</sup> (s | ec.): 64%    |
|------|----------------------------|---------------------|--------------|
|      |                            |                     |              |
|      |                            |                     |              |
|      |                            |                     |              |
|      |                            |                     | ·····        |
|      |                            |                     |              |
|      |                            |                     |              |
| <br> |                            |                     |              |
|      |                            |                     |              |
| 1    | 100                        | 200                 | 30<br>Z [mm] |



## Simulated two variations of the MuSIC v2 geometry with BIB from a 10TeV $\mu^-$ beam

|   |       | 50 µm  | 178 µm  |  |
|---|-------|--------|---------|--|
| • | MAPS: | active | passive |  |
| • | LGAD: | active |         |  |

## Nazar Bartosik

passive

936 µm



## Simulated two variations of the MuSIC v2 geometry with BIB from a 10TeV µ- beam

|   |       | 50 µm  | 178 µm  |
|---|-------|--------|---------|
| • | MAPS: | active | passive |
| • | LGAD: | active |         |

## Extra material in the LGAD scheme increases hit density by 10-30%

Nazar Bartosik



# Hit density

### passive





# Effect on the timing

## Total number of hits actually increases in the inner Barrel layers with lower material budget



## Nazar Bartosik





# Effect on the timing

## There are extra hits created at larger delays: must be looping et that were not stopped earlier



## Nazar Bartosik







# We need to include realistic amount of passive material in the **Vertex Detector geometry**

Going with an LGAD-like design could be a good choice if we want to be conservative





Vertex Detector material budget in MuSIC geometry

11