

Generic Biasing

Genproc meeting 2025/01/29

Marc Verderi LLR, Ecole polytechnique

Generic Biasing Scheme

- Adopt an "object oriented" (OO) scheme to handle any type of (forward) biasing
 - It defines an abstract layer, general enough
 - It provides some ready-to-go options based on this layer
 - It is open to users, for customized implementations
- > It handles:
 - Physics process biasing → denoted as "physics biasing"
 - Splitting/killing→ denoted as "non-physics biasing"
- It is aimed at being "modular":
 - By defining simple techniques (kind of "primitive of biasing")
 - That are combined to provide a given biasing scheme

Modularity?

Example of "force collision" scheme à la MCNP

- > The "particle cloning", "forced non-collision", "forced collision" actions can be seen as sort of biasing primitives, we call "biasing operations"
 - They are combined here to provide the "force collision" scheme
 - But they could be used in other schemes
- Generic Biasing Scheme idea:
 - Define a class for "biasing operations"
 - Define a class for "biasing operators", that decide for biasing operations
 - Provide the interface of these classes with the tracking

Generic Biasing Components

G4VBiasingOperation

- An abstract class
- Can act on a physics process:
 - > By modifying its interaction law
 - By modifying its final state generation
- Can act by itself
 - > To split or randomly kill particles

G4VBiasingOperator

- An abstract class
- Selects G4VBiasingOperation's
 - > At the beginning of the step
 - At the final state generation level
- This is the entity which is making all the decisions

G4BiasingProcessInterface

- A concrete class
- Which can wrap a physics process, to bias it
 - > Applying "physics biasing" options
- Which can have no process, to apply splitting & killing techniques
 - > Applying "non-physics biasing" options

G4BiasingProcessInterface G4GammaConversion

G4BiasingProcessInterface (no process)

- It makes the interface between the biasing classes and the tracking
 - > By collecting and applying the decisions of the current G4VBiasingOperator (if any)

"physics biasing"

G4PhotoelectricEffect

G4GammaConversion

G4ComptonScattering

- GetPostStepPhysicalInteractionLength()
 - Returns the distance at which the process will make an interaction
 - Analog exponential law is used

- PostStepDolt()
 - Called if the process has responded the shortest of the interaction distances
 - Generate final state, according to specific process analog physical law

"physics biasing"

G4BiasingProcessInterface

G4PhotoelectricEffect

G4BiasingProcessInterface

G4GammaConversion

G4BiasingProcessInterface

G4ComptonScattering

- GetPostStepPhysicalInteractionLength()
 - Returns the distance at which the process will make an interaction
 - Analog exponential law is used
 - A biased interaction law is used (if wished)
- PostStepDolt()
 - Called if the process has responded the shortest of the interaction distances
 - Generate final state, according to specific process analog physical law
 - Generate final state, according to biased law (if wished)

"physics biasing" + "non-physics biasing"

G4BiasingProcessInterface

G4PhotoelectricEffect

G4BiasingProcessInterface

G4GammaConversion

G4BiasingProcessInterface

G4ComptonScattering

G4BiasingProcessInterface

(no process)

- GetPostStepPhysicalInteractionLength()
 - Returns the distance at which the process will make an interaction
 - Analog exponential law is used
 - A biased interaction law is used (if wished)
- PostStepDoIt()
 - Called if the process has responded the shortest of the interaction distances
 - Generate final state, according to specific process analog physical law
 - Generate final state, according to biased law (if wished)
 - "non-physics biasing" competes with other processes (as any process)
 - Here, winning the race
 - Here, applying a splitting by 3

Some Volume (no biasing)

Some Volume with biasing

Some Volume (no biasing)

G4BiasingProcessInterface

(no process)

G4BiasingProcessInterface

G4PhotoelectricEffect

G4BiasingProcessInterface

G4GammaConversion

G4BiasingProcessInterface

G4ComptonScattering

MyBiasingOperator

G4FlatForce-InteractionOperation

G4ExponentialForce-InteractionOperation

G4ForceFreeFlight-InteractionOperation

G4SplittingOperation

G4WeightWindow-Operation

Some Volume with biasing

Some Volume (no biasing)

> G4FlatForce-InteractionOperation

G4ExponentialForce-InteractionOperation

G4ForceFreeFlight-InteractionOperation

G4SplittingOperation

G4WeightWindow-Operation

G4MCNPForce-CollisionOperator

MyBiasingOperator

G4FlatForce-InteractionOperation

G4ExponentialForce-InteractionOperation

G4ForceFreeFlight-InteractionOperation

G4SplittingOperation

G4WeightWindow-Operation

G4FlatForce-InteractionOperation

G4ExponentialForce-InteractionOperation

G4ForceFreeFlight-InteractionOperation

G4SplittingOperation

G4WeightWindow-Operation

G4BiasingProcessInterface

G4PhotoelectricEffect

G4BiasingProcessInterface

G4GammaConversion

G4BiasingProcessInterface

G4ComptonScattering

MyBiasingOperator

G4FlatForce-InteractionOperation

G4ExponentialForce-InteractionOperation

G4ForceFreeFlight-InteractionOperation

G4SplittingOperation

G4WeightWindow-Operation

How to use

In the main:

```
// -- Select a modular physics list
auto physicsList = new FTFP_BERT;
// -- And augment it with biasing facilities:
auto biasingPhysics = new G4GenericBiasingPhysics();
biasingPhysics->Bias("gamma");
biasingPhysics->Bias("neutron");
physicsList->RegisterPhysics(biasingPhysics);
runManager->SetUserInitialization(physicsList);
```

- More options exist for the G4GenericBiasingPhysics constructor:
 - Activate biasing for processes only
 - Or for doing splitting/killing only
 - Or to activate biasing for all charged
 - Or all neutral particles
 - > Etc.
- In ConstructSDandField() of detector construction:

```
auto biasingOperator = new MyBiasingOperator();
biasingOperator->AttachTo( logicalVolumeToBias );
```


- > geant4/examples/extended/biasing/GB01:
 - Individual process cross-section biasing
 - Implemented for neutral particles
 - Charged particle case requires development
 - > Issue: variation of cross-section during step because of energy loss
- > geant4/examples/extended/biasing/GB02 :
 - Force collision à la MCNP
 - Implemented for neutral particles (as MCNP)
- > geant4/examples/extended/biasing/GB03:
 - Geometry importance + further option
 - Scheme augmented compared to classical geometry importance
 - > Allows kinds of "intermediate" non-integer splitting values
- > geant4/examples/extended/biasing/GB04:
 - Re-implementation of a classical Bremsstrahlung splitting
- y geant4/examples/extended/biasing/GB05 :
 - Illustrates a "splitting by cross-section"
 - An invention (to my knowledge) where the splitting rate is directly adjusted from absorption crosssections
- > geant4/examples/extended/biasing/GB06:
 - Parallel geometries with generic biasing.
- > geant4/examples/extended/biasing/GB07:
 - Implement a "particle leading" biasing scheme