

Science and Technology Facilities Council

Fluidized Tungsten-Update Feb '25

Ben Suitters

Contents

- Beam Heating
- Beam Power Limits and Beam Shaping
- Warwick Physics Update

Beam Heating – Temperature Limits

- Tungsten produces an unstable oxide above ~700°C [ESS and CERN work]
- For now, we assume we can mange the oxygen in the helium circuit to prevent excessive oxidation below this level
- Short pulsed nature of beam and flowing medium means we care only about heat deposition per pulse, not heat transfer
- For $\Delta T < 600 K$ This resolves to a limit of 1.5J/mm³·pulse

[J. Habainy et al.]

Beam Heating – Profile on target

- Target heat deposition depends on delivered beam profile
- The reasonable worst case would be a pure Gaussian beam
- Actual delivered proton beam will not be Gaussian
- If we shape our beam we can reduce the heating intensity on the centre of the target
- How flat topped can we get it? Proton driver team considering this
 - Benefit to all target concepts?
 - Effect on downstream infrastructure

Beam Heating – A Test Case

- Flowing tungsten target of same diameter as Carbon target. Length defined by previous studies for UKNF
- Densest tungsten flow ~50% volume fraction

- 10GeV Gaussian beam, $\sigma = 5mm$
- Ignore engineering reality and imagine a floating rod in space

Heat deposition

Quick, simple FLUKA

Technology

- Maximum pulse temperature rise is over 1900K @ 4MW
- Allowable beam power is 1.17MW

Routes to reducing temperature

- Target Geometry
 - Increase Diameter
 - dT ~**∝** 1/D²
 - Pion Reabsorption?
 - Decrease Volume Fraction
 - dT reduces with lower volume fraction
 - Longer target for same interaction mass

- Beam Parameters
 - Increase Pulse Frequency
 - dT ∝ number of protons
 - Less intense muon pulse
 - Flat-top beam
 - Spreads protons across the target more efficiently
 - More particle interactions closer to target surface- lower reabsorption?
 - More difficult beam to produce?
 - Beam effect on downstream infrastructure

Repeat for Various Parameters

Gaussian Ø30mm

 Allowable Beam Power 1.17MW

 Allowable Beam power 2.02MW

Repeat for Various Parameters

Gaussian Ø30mm,
Gaussian Ø30mm,

Allowable Beam Power 1.17MW

Allowable Beam power 1.68MW

Now, a "Supergaussian" beam

• Equation of form $A \exp\left(-\frac{1}{2} \cdot \left(\frac{|x|}{\sigma_x} + \frac{|y|}{\sigma_y}\right)^N\right)$, N = 6

Now, a "Supergaussian" beam

Gaussian Ø30mm

Allowable Beam Power 1.17MW

Supergaussian Ø30mm

 Allowable Beam Power 1.85MW

Parameter Sweep

- Supergaussian gains ~60% allowable beam power
- A flatter beam will perform even better

Allowable Beam power, MW	Target Density		
Target diameter	25	50	
30	1.68	1.17	
45	3.12	2.02	
60	4.63	3.15	
30mm Diameter	Target Density		
Allowable Beam Power, MW	25	50	
Gaussian	×1.6	1.17	
Supergaussian	2.76	1.83	×1.6

Questions to be answered later

- Can we handle the unintended consequences of a flat-topped beam?
 - Beam tails
 - Chicane heating
- Physics studies yet to come

Physics Study Update

FLUKA target model

- Will there be an updated version of the CERN graphite target & chicane geometry & B field in MuonCollider-WG4/radiation-load-and-yield?
 - taper_chicane_v1_18_coils_exp.inp (2 years old, contains 20 not 18 coils)

