

MInternational UON Collider Collaboration

Update on Graphite Target

by Silvio CANDIDO (CERN-SY-STI-TCD) R. Ximenes, M. Calviani, D. Calzolari, A. Lechner, F. Saura, J. Manczak, C. Mucher

CERN – Systems Department, Sources Targets Interaction (STI), Targets Collimators Dumps (TCD)

13/02/2025

Forced Colling Graphite Target

Beam parameters

Parameter	Unit	Value		
Kinetic Energy	GeV	10		
Beam size	mm	5 or 7.5		
Bunch length	ns	2		
Bunch intensity	ppb	$5 * 10^{14}$		
Bunch Frequency	Hz	5		

Forced convection cooling options

	Option A	Option B
(mm)	10 GeV 5mm	10 GeV 7.5mm
R0	15	22.5
R1	20	27.5
R2	21	28.5
R3	26	33.5
R4	27	34.5
LO	800	800
L1	50	50

Target 4MW 10 GeV 5mm

No vessel Energy Deposition

With vessel Energy Deposition

Helium Colling: 0.2 kg/s @ 10 bar

FLUKA calculation on the vessel & target done by J. Manczak

Target 4MW 10 GeV 7.5mm

No vessel Energy Deposition

With vessel Energy Deposition

Helium Colling: 0.3 kg/s @ 10 bar

FLUKA calculation on the vessel & target done by J. Manczak

Colling Vessel 4MW 10 GeV 5mm

Helium Colling: 0.2 kg/s @ 10 bar

Thermomechanical simulation

Forced Convection – 5 mm gap annular flow

#	Energy [GeV]	Power [MW]	Radius [mm]	Target R0 [mm]	Mass flow rate [kg/s]	Mach	He [bar]	HTC [W/m2 °C]	Tmax [ºC]	Tsurf [ºC]	Principal stress [MPa]
1	5	2	5	15	Natural Convection	NA	1	33	2421.7	2013.9	19.23
2	10	4	5	15	Natural Convection	NA	1	33	3315	2456.1	28.25
4a	10	4	5	15	0.25	0.28	10	4797.00	1447.8	652.29	17.66
4b	10	4	5	15	0.20	0.22	10	3898.00	1515.8	762.55	19.161
4c	10	4	5	15	0.10	0.11	10	2255.00	2095.6	1239.9	25.69
5a	10	4	7.5	22.5	0.36	0.28	10	4792.03	1392.4	548.09	19.52
5b	10	4	7.5	22.5	0.30	0.23	10	4135.00	1539.7	640.22	21.35
5c	10	4	7.5	22.5	0.25	0.20	10	3419.90	1618.8	683.19	22.42

From previous LS Dyna explicit structural simulation of stress waves propagation in graphite for baseline:

Sublimation T [°C] 3330

- 1- 2-

Physical Limit

Colling Flow Field

Its important to keep the velocity as low as possible to prevent erosion of the graphite (M<0.3)

Flow in the curve can be improved by design

Demonstrator

L_{tot} (cm)

200

L_{up} (cm)

90

20 15 10 OUT r_{in2} r [cm] r_{in1} -5 -10 -15 Ltot -20 0 50 100 150 200 z [cm]

Horn parameters

r_{in2} (cm)

12

Current

(kA)

220

r_{out} (cm)

15

Conductor

thickness (cm)

0.25

Forced convection cooling vessel

(mm)	14 GeV 2mm
R0	6.0
R1	11
R2	12
R3	17
R4	18
LO	900
L1	50

r_{in1} (cm)

2

Cooling Demonstrator target and horn geometry

Beam parameters

Parameter	Unit	Value	
Kinetic Energy	GeV	14	
Beam size at 1 sigma	cm	0.2	
Bunch length at 1 sigma	ns	10	
Bunch intensity	ppb	10 ¹³	
Bunch Frequency	Hz	0.446 to 0.05	

FLUKA calculation on the vessel & target done by P. Jurj

Helium Colling: 10 g/s @ 5 bar

Flow Field Colling Demonstrator

Pressure loss (can be improved by design)

Summary

- For the 4 MW option with 10 GeV, it is possible to use both cooling options, considering:
 - For the 5 mm beam, we need a lower flow rate, but the higher velocity of helium could lead to erosion.
 - For the 7.5 mm beam, we need a higher flow rate but with a safer velocity range.
- Missing results:
 - a) <u>Thermal shock simulation!</u>
 - b) Design of the cooling system with support, probably with flanges that will decrease the HTC

- the in the

Test Demonstrator for different beam frequencies

Non Collider Collaboration

Thank you for attention