ΩŒ

Plasma Diagnostics of Ion Sources

Ursel Fantz Ursel ursel.fantz@ipp.mpg.de

Monitoring and Quantification – Spatial and Temporal Resolution

CERN Accelerator School, Senec, Slovakia 29th May – 8th June 2012

invasive – non-invasive ; active – passive ; basic – specific parameters

Introduction into techniques and applications for example in [1] – [7]

CAS on Ion Sources, 6th Ursel Fantz, p. 3 June 2012

IJIJ

Example case: IPP ion source for negative hydrogen ions

IPP

匝

ICP: f = 1 MHz, P = 70 kW, p = 0.3 Pa 6s plasma (4s beam), every 3 min: BATMAN cw, up to 1 hour, every 3 min: MANITU

H formation and losses ...

Ion sources for negative hydrogen ions: ionising – recombining plasma

Recommended text books [1], [2], [5], [6] & publications and programs by F.F. Chen [8]

IPP

Plasma potential

CAS on Ion Sources, 6th June 2012 CAS on Ion Sources, 6th June 2012

匝

Probe

influences shape of electron saturation current

- \triangleright cylindrical probe (standard case)
- ▶ planar probe \rightarrow A_{pr} >> sheath
- \blacktriangleright spherical probe

CAS on Ion Sources, 6th Ursel Fantz, p. 11 June 2012

IPP

Langmuir probes: ϕ_{pl} , n_e, T_e, (EEDF) **Ion density (positive ions)** 16 |
14 **| ←** ion saturation | electron **| i**on saturation current 8 10 12 14 **transition saturation** ent [mA] **ion** $\frac{1}{2}$ $\frac{n_i}{2}$ 4 6 probe curr e 5 10 15 20 25 -2 0 o. f $\begin{array}{ccc} 10 & 15 & 20 & 25 \\ \text{probe voltage [V]} & & & \end{array}$ \blacktriangleright choose proper ϕ_{pr} needs **mi** guide line: $\phi = \phi_{\text{pl}} - 10 \times kT_{\text{e}}$ \triangleright check if $n_e = n_i$ is fulfilled

► I_{sat, i} at fixed ϕ **_{or}:** useful as monitor signal

-
- \blacktriangleright basically three theories available OML: Orbital-Motion-Limited ABR: Allen-Boyds-Reynolds BRL: Bernstein-Rabinowitz-Langmuir

 $I_{e,sat} = \frac{1}{4} n_e e v_e A_{eff}$ 4

1

 \blacktriangleright problem: effective probe area due to increase of plasma sheath

take current at plasma potential

 $e^{-\frac{1}{k}}$ $\frac{1}{r_{pr}l_{pr}e}$ $\sqrt{\frac{2\pi k_B T}{k_B}}$

 $\int_{\rho}^e r^2 \int_{\rho}^e r^e \sqrt{2\pi k_B T_e}$

l

 $\left(\boldsymbol{\phi}\right)$

I

n

 p_l *e m_e*

m

needs **T**_c

 $_{s, sat}$ =

all of them assuming collision-less plasma sheath, i.e. λ (ions) > r(sheath)

$$
\blacktriangleright \text{ simplest case: OML (rpr / rsheath < 3)\nIi = ni e Apr \sqrt{\frac{k_B T_e}{m_i}} \longleftarrow \text{needs } T_e
$$

often unclear, e.g. hydrogen
\n
$$
\rightarrow H^+, H_2^+, H_3^+
$$

Specific features – to keep in mind

 \triangleright invasive method \rightarrow probe size versus plasma volume

For monitoring or quantification with spatial and temporal resolution !

<u>Epp</u>

CAS on Ion Sources, 6th June 2012 CAS on Ion Sources, 6th June 2012

Emission versus absorption spectroscopy

CAS on Ion Sources, 6th Ursel Fantz, p. 18 June 2012

匝

being perfectly in the range required for the ion sources

EPP

 Ω

— 3
.ಠ
.

bsorption [

0 A b

 \blacktriangleright in vacuum

TDD

1 $\int \ln \left| \frac{I(\lambda, t)}{I(\lambda, 0)} \right|$ ⎠ \setminus $\overline{}$ ⎝ $\lambda_k = \frac{8\pi c}{3^4} \frac{g_k}{g_k} \frac{1}{4\pi r} \int \ln \left(\frac{I(\lambda, l)}{I(\lambda, l)} \right) dl$ *I* $I(\lambda, l)$ A_{ik}^{\dagger} $n_k = \frac{8\pi c}{\lambda} \frac{g_k}{g_k} \frac{1}{g_k} \int \ln \left(\frac{I(\lambda, l)}{I(\lambda, l)} \right) d\lambda$ λ λ $\mathcal{\lambda}_c^4$ π $(\lambda, 0)$ $\frac{8\pi c}{\lambda_0^4}\frac{g_{\overline{k}}}{g_{\overline{i}}}\frac{1}{A_{\overline{i}\overline{k}}l}\int\limits_{line}\ln\biggl(\frac{I(\lambda,l)}{I(\lambda,0)}\biggr)$ ensity \triangleright with plasma \rightarrow subtract emission Rel. int e

$$
\mathcal{L}(\mathcal{L}) = \mathcal{L}(\mathcal{L})
$$

 $\mathsf{but} \dots$ $\mathsf{but} \dots$

Line saturation

- **F** strong absorption: $n_k \times l$ $\frac{3}{q}$ $\frac{4}{q}$ $\qquad \qquad \frac{3}{q}$ Gaussian fit $\qquad \qquad$ (b)
- \triangleright correction factors by profile fitting

and ... and

Depopulation effect

- \blacktriangleright strong intensity
- \triangleright attenuation of laser to ≈1% \rightarrow trade-off with temporal resolution

CAS on Ion Sources, 6th June 2012
 CAS on Ion Sources, 6th June 2012

PP

low absorption

medium absorption

heavy absorption

Gaussian fit

measured signal

Wavelength

<u>TDP</u>

Laser absorption for Cs in ion sources

Tuneable diode laser – Fibre optics – Photo diode with interference filter

Simple and robust setup for application to ion sources !

(a)

Cavity – Ringdown – Absorption – Spectroscopy → **CRDS**

TPP

FPP

Emission spectroscopy: n_s , $T_s \rightarrow e$, H, H₂, H⁻

The main principle

Non-invasive and line of sight integrated method !

Measures density of excited state ...

$$
\varepsilon_{pk} = n(p) A_{pk} \frac{hc/\lambda}{4\pi}
$$

... which depends on plasma parameters !

Recommended text books [1], [4], [7], [9], [10]

IPP

TPP

IPP

T

Emission spectroscopy: n_s , $T_s \rightarrow e$, H, H₂, H⁻

From intensity $I_{pk} = n(p) A_{pk}$ to plasma parameter

FPP

CAS on Ion Sources, 6th June 2012 CAS on Ion Sources, 6th June 2012

IPP

Electron temperature from absolute line emission

$$
I_{pk} = n_0 n_e X_{pk}^{eff}(T_e, n_e, \dots)
$$

$$
n_0, n_e \text{ known} \Rightarrow X_{pk}^{eff}(T_e, n_e, \dots) = \frac{I_{pk}}{n_0 n_e}
$$

Find suitable gases and diagnostic lines

s-1] \blacktriangleright admixture of small amount 17 10-1710-16 ficient [m3 f of diagnostic gas \blacktriangleright prominent example: Ar 10⁻¹⁸**1** ^{- 18} **+ 1 eV** rate coef **- 0.5 eV** Very sensitive for low T_e ! 10-19 **+- 0.1 eV** ArI 750 nm Emission **CAS on Ion Sources, 6th** June 2012
 CAS on Ion Sources, 6th June 2012 10^{-19} $1 \t2 \t3 \t4 \t5 \t6 \t7 \t8$ 2 3 4 5 6
Electron temperature [eV]

IPP

FPP

<u>Epp</u>

Emission spectroscopy: n_s , $T_s \rightarrow e$, H, H₂, H⁻

Electron temperature from line ratio (relative calibration)

 $\frac{T_{pk}}{T_{pk}^2} = \frac{T_1 \cdot \mu_0}{n_2 \cdot \mu_0^2} \frac{X_{pk}^2 \cdot Y_{ek}}{X_{pk}^2 \cdot (T_e)}$ \rightarrow ratio of rate coefficion

Find suitable gases and diagnostic lines Find suitable gases and diagnostic

- \blacktriangleright n₁, n₂ inert gases or n₁ = n₂
-
- \blacktriangleright ground state excitation
- \triangleright X_{pk} ratio depends on T_e \bigcirc d₀ 100

U. Fantz et al., Nucl. Fusion 49 (2009) 125007 **Actinometry: density ratio from line ratio (relative calibration)**

 $\eta_1 \mathcal{W} X_{pk}^1(T_e)$ $\frac{I_{pk}^{1}}{2} = \frac{n_1}{2} \frac{\gamma_{\ell} X_{pk}^{1}(T_e)}{2}$ \rightarrow ratio of densities \mathcal{V}_2 \mathcal{V}_e $X_{pk}^2(T_e)$ I_{pk}^{2} *n*₂ $\cancel{v_e}$ $X_{pk}^{2}(T_e)$ ratio of

for known rate coefficients

<u>EPP</u>

<u>Epp</u>

Emission spectroscopy: n_s , $T_s \rightarrow e$, H, H₂, H⁻

IPP

匝

Particle density from absolute line emission

$$
I_{pk} = n_0 n_e X_{pk}^{eff}(T_e, n_e, ...)
$$

\n
$$
n_e, T_e \text{ known} \Rightarrow n_0 = \frac{I_{pk}}{n_e X_{pk}^{eff}(T_e, n_e, ...)}
$$

Knowledge of dominant excitation mechanism is essential !

C 852 Example: Cs and Cs+ lines

 $C_s^{CS} = n_{Cs} n_e X_{852}^{Cs} (T_e)$ **Cs**: $I_{852}^{Cs} = n_{Cs} n_e X_{852}^{Cs} (T)$

needs n_e , almost independent of T_e

$$
\mathbf{Cs}^+:\qquad I_{460}^{Cs^+} = n_{Cs^+} \; n_e \; X_{460}^{Cs^+}(T_e) \tag{8}
$$

needs n_e , strong dependence on T_e

Survey spectrometer and on-line monitoring

Example: emission spectroscopy: $n_s \rightarrow H^-$

匝

U Fantz D Wünderlich U. Fantz, D. NJP 8 (2006) 301 **A novel diagnostic technique for H¯ volume density**

Population mechanisms for H

 $\mathbf{||}$

TPP

Plasma Diagnostics of Ion Sources

The three W's

- \triangleright What do I want to know ? \rightarrow and why?
- \triangleright What is the adequate technique ? \rightarrow effort versus gain!
- \triangleright What is the accessibility of the source ? → feasibility !

The three examples

- **Example 1** Langmuir probes $\rightarrow \phi_{\text{nl}}$, n_e, T_e, (EEDF)
- Absorption techniques \rightarrow n_{species} \rightarrow Cs, H^{$-$}
- **F** Emission spectroscopy→ n_s, $T_s \rightarrow e$, H, H₂, H^{$-$}

The three "keep-in-mind's"

- \blacktriangleright Monitoring versus quantification \rightarrow trends or full information
- \triangleright Spatial resolution \rightarrow averaged or x-resolved (step width!))
- \triangleright Temporal resolution \rightarrow averaged or t-resolved (time scale!)

Diagnostics – The Window to the Knowledge !

<u>יתן</u>

References

- [1] F. F. Chen, J.P Chang, *Lecture Notes on Principles of Plasma Processing* (Kluwer/Plenum, 2003)
- [2] M. Lieberman, A. Lichtenberg, *Principles of Plasma Discharges and Materials Processing* (Wiley,1994)
- [3] B. Chapman, *Glow Discharge Processes* (Wiley, 1986)
- [4] R. Hippler, S. Pfau, *Low Temperature Plasma Physics* (Wiley, 2001)
- [5] D. Flamm, O. Auciello: *Plasma Diagnostics*, Volume 1 (Academic Press, Inc., 1989)
- [6] I.H. Hutchinson*: Principles of Plasma Diagnostics* (Cambridge University Press, 1987)
- [7] A. Thorne, *Spectrophysics: Principles and Applications* (Springer 1999)
- [8] http://www.ee.ucla.edu/~ffchen/
- [9] U. Fantz: *Basics of plasma spectroscopy* Plasma Sources Sci. Technol. 15 (2006), 137
- [10] U. Fantz: *Emission Spectroscopy of Molecular Low Pressure Plasmas* Contrib. Plasma Phys. 44 (2004) 508

ПJ