
Universität Augsburg
Max-Planck-Institut für Plasmaphysik

Plasma Diagnostics of Ion Sources
Ursel FantzUrsel Fantz

ursel.fantz@ipp.mpg.de

Diagnostics – The Window to the Knowledge

Langmuir probes: φpl, ne, Te

Absorption techniques: ns → Cs, H¯

Emission spectroscopy: n T → e H H H¯Emission spectroscopy: ns, Ts → e, H, H2, H  

CERN Accelerator School, Senec, Slovakia 29th May – 8th June 2012

Monitoring and Quantification – Spatial and Temporal Resolution

Preliminary considerations

What do I want to know?

identify the quantity (and the reason for it)

define the required precision

temporal behaviour and required time resolution

necessity for spatial resolutionnecessity for spatial resolution 

…

Accessibility of the ion source?Adequate diagnostic technique? y

diagnostic ports

test stand or continuous operation

q g q

extensive or simple setup

data acquisition and evaluation

risks and feasibility

reliability

reliability

costs and time (manpower) needed
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……



General plasma diagnostics techniques

invasive – non-invasive ; active – passive ; basic – specific parameters

Method Standard Sophisticated Extras

Langmuir probe single probe
(cylindrical or planar)

double or triple 
probe

special method: 
Boyd-Twiddy

emissive probe

emission 
spectroscopy

optical wavelength 
range with fibre optics 

extended 
wavelength range 

sophisticated system 
spectral resolution, 

& survey spectrometer VUV, UV or IF type of detector

absorption 
spectroscopy

white light absorption 
technique

tuneable laser 
absorption

cavity-ringdown
spectroscopy

Laser methods laser induced 
fluorescence

TDLAS

mass residual gas analyser energy resolved 
spectrometry mass spectrometry
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Introduction into techniques and applications for example in  [1] – [7]

Example case: IPP ion source for negative hydrogen ions

ICP:  f = 1 MHz, P = 70 kW, p = 0.3 Pa
6s plasma (4s beam), every 3 min: BATMAN
cw, up to 1 hour, every 3 min: MANITU

H⎯ formation and losses ... 

volume process

magnet boxesmagnet boxes

source body
at 50°C

oven at
cesium followed by

H2 + e- → H2(v) + e- + hν

H ( ) H¯ H

H2(B,C)

p

magnet boxes

Cs inlet

magnet boxes

Cs inlet

> 120°C H2(v) + e- → H¯ + H

dissociative attachment
H2⎯

f

grounded
gridx

y

x

y
grounded
gridx

y

x

y

grid at
150°C

surface process

H, Hx
+ + surface e- → H¯

i l
low work function

plasma
grid

extraction
grid

gridxz xz

plasma
grid

extraction
grid

gridxz xz caesium layer

destruction processes

H¯ + e- → H + 2e-

t ti
expansion

plasma
generation
(driver)

∅ 24 t ti
expansion

plasma
generation
(driver)

∅ 24

H  +  e → H + 2e

H¯ + H+ → H + H

H¯ + H → H + H + e-
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extraction
system

p
chamber∅ = 24 cm

ℓ = 15 cm 32×59×23 cm3

extraction
system

p
chamber∅ = 24 cm

ℓ = 15 cm 32×59×23 cm3

... determine source optimisation



Example case: sources for negative hydrogen ions

Ion sources for negative hydrogen ions: ionising – recombining plasma

Filter field
≈ 10 mT

H, Hx
+ + surface e- → H¯Filter field

SRF power
100 kW

p = 0.3 Pa Plasma generation
ionising plasma

, x

Cs evaporation → low work function

gas feed

e
Hx

+

H
H¯

ionising plasma

ionisation: α ≈ 0.1
dissociation: δ ≈ 0.3
T 10 V 5 1018 3

g
H Te ≈ 10 eV, ne ≈ 5×1018 m-3

H⎯ generation
recombining plasma

Cs
evaporation N

Driver
∅ 24cm

Expansion
region

Extraction
region

g p

Te ≈ 1 eV, ne ≈ 5×1017 m-3

H¯/ne ≈ 0.1 – 5
Cs+/n ≈ 0 01 – 0 1

evaporation

∅ 24cm region region

focus of diagnostics 
(and modelling)

Cs /ne ≈ 0.01 0.1

Main issues

Production and destruction of negative ions

CAS on Ion Sources, 6th June 2012Ursel Fantz, p. 5

(and modelling) 
on plasma close to the grid

g
Extraction of negative ions
Reduction of co-extracted electrons

Langmuir probes: φpl, ne, Te, (EEDF) 

Main principle

plasma chamber stick a wire into the plasma

probe tip
(tungsten wire) 

s c a e o e p as a

tungsten, ∅≈ 100 µm, l = 1 cm

choose a reference electrode( g )
insulator 

(ceramics)
potential of plasma chamber 

apply a variable voltage

voltage supply 
(-50 V to + 50 V)

typ. from - 50 V to + 50 V

resistor

voltage measurement

I – V

characteristics
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Recommended text books [1], [2], [5], [6] & publications and programs by F.F. Chen [8]



Langmuir probes: φpl, ne, Te, (EEDF) 

Main principle

plasma chamber
φ

16
electron

probe tip

φfloating

10

12

14

  transition

 electron
saturation

[m
A

]

ion saturation

probe tip

φprobe
φplasma 6

8

10

e 
cu

rr
en

t 

n
Te

EEDF

0

2

4

pr
ob

e ne
ni

5 10 15 20 25

-2

0

b lt [V]probe voltage [V]

φfl

φpl
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Langmuir probes: φpl, ne, Te, (EEDF) 

Floating potential

1

16
  electron

ion saturation same fluxes for ions and electrons

8

10

12

14

  transition

saturation

en
t [

m
A

]

ion saturation sa e u es o o s a d e ec o s

Γions = Γelectrons

same currents

2

4

6

8

pr
ob

e 
cu

rr
e

no probe current

5 10 15 20 25

-2

0

2p

Iprobe = 0   → φfl

5 10 15 20 25
probe voltage [V]

φfl
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Langmuir probes: φpl, ne, Te, (EEDF) 

Plasma potential

16
  electron

ion saturation
determined by ambipolar diffusion

8

10

12

14

  transition

saturation

en
t [

m
A

]

ion saturation turning point of I-V characteristics

zero-crossing of second derivative

 

V
2 ]

2

4

6

8

pr
ob

e 
cu

rr
e

d2 I / d φpr
2 → φpl

1

2

e
 [

m
A

 /
 V

φ5 10 15 20 25

-2

0

2p

0

de
ri

va
tiv

e φpl
5 10 15 20 25

probe voltage [V]
φpl

f ith hi h i l l

5 10 15 20 25

-1
se

co
n

d
 for curves with high noise level

crossing of linear fits to
electrons saturation current and 
transition close to turning point
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5 10 15 20 25

probe voltage [V]

transition close to turning point

Langmuir probes: φpl, ne, Te, (EEDF) 

Electron energy distribution function (EEDF) and electron temperature

16
  electron

ion saturation

distinguish:  EEDF = sqrt(E) × EEPF

8

10

12

14

  transition

saturation

en
t [

m
A

]

ion saturation

EEDF

e.g.: Maxwell function probability function

plot log(I ) versus E = φ φ

for both: normalisation

2

4

6

8

pr
ob

e 
cu

rr
e

Te

EEDF plot log(Ipr) versus E = φpl − φpr

d(ln I ) / dE) = e / ( kbTe )

slope yields Te for Maxwell EEDF

2

m
A

 /
 V

2 ]

100
slope → Te

5 10 15 20 25

-2

0

2p b e

0

1

 

er
iv

at
iv

e 
[m

φpl
10-2

10-1

[e
V

-3
/2

]

 

5 10 15 20 25
probe voltage [V]

φpl

-1

0

se
co

nd
 d

e

EEPF

10-4

10-3

 E
E

P
F

 

Te also from potential difference

φpl−φfl = kbTe × ln(sqrt(mi/(2πme)))
≈ 2-3 × T
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5 10 15 20 25
probe voltage [V]

0 1 2 3 4 5 6
energy [eV]

≈ 2 3 × Te 



Langmuir probes: φpl, ne, Te, (EEDF) 

The electron density

electron saturation current
16

  electron
ion saturation e ec o sa u a o cu e

8

10

12

14

  transition

saturation

en
t [

m
A

]

ion saturation

effeesate AvenI
4

1
, =

2

4

6

8

pr
ob

e 
cu

rr
e

ne

problem: effective probe area
due to increase of plasma sheath

5 10 15 20 25

-2

0

2p

take current at plasma potential

→ A = A5 10 15 20 25
probe voltage [V]

φpl

→ Aeff = Aprobe

epl
e Tk

m

l

I
n

φ
2

)(
=Probe geometry

eBprpr
e Tkelr π2

needs Te

Probe geometry 

influences shape of electron saturation current

cylindrical probe (standard case)
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planar probe → Apr >> sheath

spherical probe

Langmuir probes: φpl, ne, Te, (EEDF) 

Ion density (positive ions)

ion saturation current
16

  electron
ion saturation ion saturation current

basically three theories available

OML: Orbital-Motion-Limited
8

10

12

14

  transition

saturation

en
t [

m
A

]

ion saturation

ABR: Allen-Boyds-Reynolds

BRL: Bernstein-Rabinowitz-Langmuir

ll f th i lli i l
ni2

4

6

8

pr
ob

e 
cu

rr
e

all of them assuming collision-less 
plasma sheath, i.e. λ(ions)  >  r(sheath)

5 10 15 20 25

-2

0

2p

simplest case OML (r /r < 3)5 10 15 20 25
probe voltage [V] simplest case: OML (rpr /rsheath < 3) 

i

eB
prii m

Tk
eAnI = needs Techoose proper φpr

im

needs mi

often unclear, e.g. hydrogen

guide line: φ = φpl − 10 × kTe

check if ne = ni is fulfilled
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often unclear, e.g. hydrogen
→ H+, H2

+, H3
+Isat, i at fixed φpr: useful as monitor signal



Langmuir probes: φpl, ne, Te, (EEDF) 

Specific features – to keep in mind

invasive method→ probe size versus plasma volume

level of noise → EEPF for typically three orders of magnitude

average, smoothing, filtering

RF field → oscillating φpl

measured curve ≠ real curve

u
rr

en
t

real curve

oscillation

p
ro

b
e 

cu

measured curve
RF compensation

active or passive

magnetic field → gyro motion

use Ii instead of I 20 10 0 10 20 30

active or passive

use Iion instead of Ie

negative ions → I− instead of Ie
for same mass Isat ion = I sat symmetric curves

probe voltage
-20              -10              0                10               20              30
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sat,ion sat, y

For monitoring or quantification with spatial and temporal resolution !

Langmuir probes: φpl, ne, Te, (EEDF) 

Double probe

probe 1 A1 two probe tips of same sizeprobe 1 A1

e a 

two probe tips of same size

distance > 2 Debye length

voltage between the probes

compatible with 
quartz or ceramic
chamber

 vo
lt

ag
e

p
la

sm
a voltage between the probes

both probes are floating
no reference potential needed

chamber
and RF field

1

2 ion saturation
probe 1

A
]

I
probe 2 A2

0

1

transition regionu
rr

e
n

t 
[m

A Ii1

symmetric curve: ion saturation current

I+ II

-2

-1
transition region

Ii2

cu

ion saturation
probe 2

eB

sati
i

m

Tk
eA

I
n ,=

2
,,

,
−+ +

= isatisat
sati

II
I
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-40 -20 0 20 40
voltage between the tips [V]

im
Te from transition region



Example: Langmuir probes in ion source & Boyd-Twiddy setup

Comparison of EEDF
10-1

Boyd Twiddy
H2, 80 kW, 0.36Pa

voltage ramp is superimposed by

Boyd-Twiddy method: 

direct measurement of EEDF

2[e
V

-3
/2

]

Boyd-Twiddy
d=5cm

voltage ramp is superimposed by

AC modulated signal

measure frequency spectrum 

B. Crowley, S. Dietrich PSST 18 (2009) 014010

10-2

Langmuir probe
without RF compensation

f 
(E

) 
[

Max

of probe current

H2,80kW, 0.36Pa
0 5 10 15 20 25 30

10-3

Energy [eV]

Vpl= 21.5 V

axwellT
e =6.6eV

10-1

100

-3
/2

]
Energy [eV]

Sophisticated
Langmuir probe system

driver exit

10-2

10

Te=1.2eV
Te=1.4eV

Te=2.9eV
Te=6.6eV

f(
E

) 
[e

V
-

Te=14eV

nc
e 

[c
m

]

5
9

14
19McNeely et al. 

PSST 18 (2009) 014011

for RF ion sources
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plasma grid10-3
0 5 10 15 20 25 30

e

Energy [eV]

di
st

an0
5

Maxwellian EEDF

All about photons: emission and absorption

Radiation of low temperature plasmas

Colourful plasmas ! Neutrals atoms and molecules

He

pink

Ions  single charged

Electrons      ne << nn

p

Ne collisions and spontaneous emission

red a + ef → a* + es  → a + hν + es

N2, air

orange

electronically excited state

radiation

level p

e impact

H2, H

purple level q

p

excitation

Emission of light
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purple level q Emission of light
in the UV-VIS-IR



All about photons: emission and absorption

Emission versus absorption spectroscopy

photon energy E = hν
l h (E E )/h

Emission Absorption
wavelength λ = (Ep-Ek)/hc 

Einstein coefficients Apk, Bkp

Emission

passive

Absorption

active

it d t t
p

it d t t
p

excited state

λpk, Apk

p

impact
it ti k

excited state

λpk, Bkp

p

k

radiation field Lλ

λpq, Bqp

q

excitation k

λpq, Apq
q

k

g [ ]
 

te
ns

ity

 

nt
en

si
ty

 

806 808 810 812 814 816
Wavelength [nm]

In
t

Wavelength [nm]
806 808 810 812 814 816

 

In
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VIS: simple equipment
information of upper level p

expensive equipment
information of lower level q

Absorption techniques: nspecies → Cs, Ar, He, ... 

Main principle of line absorption

light source detectorabsorbing mediumlight source detector
optics

absorbing medium

white light 

tunable laser
vacuum or plasma

spectrometer with CCD

diode with filter

Non-invasive and line of sight integrated method !

[ ]lIlI )(exp)0,(),( λκλλ −=Absorption in a medium
with path length l

)(λκabsorption coefficient
statistical weights g g[ ]lIlI )(exp)0,(),( λκλλwith path length    l

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(

)0,(
ln

1
)(

lI

I

l
k

λ
λλ with Ladenburg relation

λλλκ
8

)(
4

0 iki
kki

Ag
nd =∫

statistical weights gi, gk

⎟
⎠

⎜
⎝ ),(

)(
lIl λ π8kline

cg∫

∫ ⎟⎟
⎞

⎜⎜
⎛

= k d
lIgc

n λλπ ),(
ln

18
Density of lower state
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∫ ⎟⎟
⎠

⎜⎜
⎝

=
lineiki

k d
IlAg

n λ
λλ )0,(

ln
4
0

Density of  lower state
ground state, metastables



Absorption techniques: nspecies → Cs, Ar, He, ...

Example: Cs line at 852.1 nm

resonance line 6 2S1/2 – 6 2P3/2 with hyperfine structure

take line broadening into account

Doppler profile
1 5 0 15 o

nwhite light

appearance depends on technique

m

Tk

c
B

FWHMD

2ln8
,

λλ =Δ
1.0

1.5

0.10

0.15

ht
 a

bs
or

pt
io

a
b

so
rp

tio
n

 

absorption

5 4

T = 1000 K

ity

sum of Doppler-broadened
hyperfine lines

0.5 0.05

n
a

l w
h

ite
 li

g

 

g
n

a
l L

a
se

r 
a

Laser
absorption

F F

4 42 3
3 3

 

In
te

ns
i

4 3
852.080 852.100 852.120 852.140

0.0 0.00 S
ig

n

S
ig

Wavelength [nm]

absorption

852.105 852.110 852.125 852.130 852.135

3 4

Wavelength [nm] apparatus profile (spectrometer) Doppler profile

white light absorption ↔ laser absorption

CAS on Ion Sources, 6th June 2012Ursel Fantz, p. 19

Wavelength [nm]

six hyperfine lines overlap to two peaks: Δλ ≈ 21 pm

apparatus profile (spectrometer) Doppler profile

Absorption techniques: nspecies → Cs, Ar, He, ...
U. Fantz, C. Wimmer

Example: Cs line at 852.1 nm

white light absorption versus laser absorption

U. Fantz, C. Wimmer
J. Phys. D 44 (2011) 335202 

0 04
white light absorption

0.020
 

laser absorption

0.02

0.04

nCs = 1.4 x 1015 m-3

on
 [

a.
 u

.]

0.010

0.015

n 
[a

. 
u.

]

nCs = 3.5 x 1013 m-3

0.00

 

A
bs

or
pt

io

0.005

A
bs

or
pt

io
n

851.6 851.8 852.0 852.2
-0.02

Wavelength [nm]
0.0 0.1 0.2 0.3 0.4

0.000

A

Rel. wavelength [a. u.]

Improved detection limit for laser absorption: factor > 40 !

sensitivity range: 3×1013 m-3 1017 m-3 (path length = 15 cm)

g [ ]
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sensitivity range: 3×1013 m 3 ̵ 1017 m 3 (path length = 15 cm)
being perfectly in the range required for the ion sources



Absorption techniques: nspecies → Cs, Ar, He, ...

Straightforward analysis

1
in vacuum

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= k

k d
I

lI

lA

gc
n λ

λ
λ

λ
π

)0(

),(
ln

18
4

low
absorption

1

en
si

ty

(a)
with plasma → subtract emission

∫ ⎟
⎠

⎜
⎝lineiki

k IlAg λλ )0,(4
0

... but ....
h b ti

medium
absorption

0

R
el

. i
nt

e

Line saturation

strong absorption: nk × l
4

Gaussian fit

heavy absorption

a.
 u

.]

0

(b)
g p k

correction factors by profile fitting

and

2
measured signal

bs
or

p
tio

n 
[a

... and ....
0

A
b

Wavelength
Depopulation effect

strong intensity
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strong intensity

attenuation of laser to ≈1% → trade-off with temporal resolution

Laser absorption for Cs in ion sources

Tuneable diode laser – Fibre optics – Photo diode with interference filter

diode
laser
diode
laser

single mode laser, 150 mW
λ = 851-853 nm with ΔλFWHM = 0.01 pm

lens f = 25.4 mm

fiber
105 µm

lens f = 25.4 mmlens f = 25.4 mm

fiber
105 µm

lens f = 25.4 mm

ND-filter 2.0 interference filter 852 nmbeam
diameter
11.5 mm

µ
NA = 0.22

ND-filter 2.0 interference filter 852 nmbeam
diameter
11.5 mm

µ
NA = 0.22

photo
diode

fiber
200 µm

NA = 0.22
photo
diode

fiber
200 µm

NA = 0.22

Simple and robust setup for application to ion sources !
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Example: laser absorption for on-line monitoring of Cs dynamics

On-line monitoring: vacuum – plasma (6s with 4s beam) - vacuum

 
30 s after pulse:
Cs peak & decay time

3

4
5

3 ]
Cs density
laser absorption

BATMAN #68562

Cs peak & decay time

2

3

3

4

RF off io
n 

[a
. 

u.
]

y 
[1

015
 m

-3

RF on

laser absorption

1

2

1

2

RF off

C
s 

em
is

s

C
s-

de
ns

ity

RF on

5450 5455 5460 5465

0 0

1 C

Cs emission

C

5450 5455 5460 5465
Time [s]

3 s before pulse: vacuum
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3 s before pulse: vacuum
6 s plasma with 4 s beam: plasma
90% of Cs is ionized

Absorption techniques: nspecies → H⎯, Cs, Ar, H3
+...

Cavity – Ringdown – Absorption – Spectroscopy → CRDS
pumping  of an optical cavity by a (tunable) laser source

measurement of signal decay after laser source is switched off

dcavity detectorlaser

measurement of signal decay after laser source is switched off

high reflectivity mirrors
R>99.9%

transmitted 
signal

plasma
with length l

Measurement of laser light attenuation trapped in a high-finesse optical cavity

transfers absorption signal from wavelength into time dependence

′

0

t

0 e(t) τ−
⋅= II

)1(0 R

d
=τ; )

1

'

1
(

l

d1
n −⋅⋅=

additional  absorption ττ ′→0empty cavity with decay time τ0
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0
)1(0 Rc −

)
0'

(
lcσ ττ⋅



Absorption techniques: nspecies → H⎯, Cs, Ar, H3
+...

Cavity – Ringdown – Absorption – Spectroscopy → CRDS

Example H⎯
1.0

 

)
11

(
d1

n −⋅⋅= cross section: photodetachment

0 6

0.8

τ0 (reflectivity of mirrors)

nt
en
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ty

empty cavity

)
0'

(
lcσ

n
ττ⋅

= cross section: photodetachment

3

4

 

0-2
1  

m
2
]

H- + hν → H + e

0 2

0.4

0.6

density

0

 

m
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 in

1

2

3

 

se
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n 

σ 
[1

0.0

0.2

limited by time resolution

increase
density
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0 8

1.0

.]

0.0 0.5 1.0 1.5
0

1

cr
os

 s

wavelength [μm]

Nd-YAG laser

0 5 10
Time [μs]

0.6

0.8

τ0 = 62 μs

si
gn

al
 [

a.
u.

empty cavity (vacuum)

H¯ density: line of sight averaged

detection limit ≈ 1015 m-3 0.2

0.4
plasma

τ = 47 μss
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H¯ = 5×1017 m-3 → t = 8 µs
0 50 100 150 200 μs

Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 

The main principle

spectrometer detectorplasma spectrometer    detector
optics

plasma

UV and VUV: vacuum system 
IF: detector

Non-invasive and line of sight integrated method !

λε /
)(

hc
Apn=

Measures density of excited state ... 

π
ε

4
)( Apn pkpk =

... which depends on plasma parameters !
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Recommended text books [1], [4], [7], [9], [10]



Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 

What information can be obtained from the line emission ?

I n(p) A
Intensity: plasma parameters

1.0
 

Imax n(p) Apk
density and temperature of
neutrals, ions, electrons

0 6

0.8

u.
]

insight in plasma processes

Line profile: broadening mechanism

⇒=∫ 1λλ dP
line

λλ εε Ppk=

0.4

0.6

en
si

ty
 [

a.
 u

Δλ Tgas Doppler broadening:  particle temperature

Line profile: broadening mechanism

0 0

0.2In
te

Wavelength:  species

Wavelength shift: particle velocity

499 500 501

0.0

Wavelength [nm]
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λ0 Element

Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 
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..

Appearance depends on spectral resolution !

Wavelength [nm] Wavelength [nm]



Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 

Spectroscopic system

OpticsSpectrometerDetector

h t lti li

focus length
spectral resolution Δλ fibphotomultiplier

λ scan
Δλ, Δt

diode array

spectral resolution Δλ
grating
spectral resolution
Blaze - intensity

fibre
very flexible
VIS: glass, quartz, 
UV enhanceddiode array

λ range

CCD, ICCD
pixel size - Δλ

y

slits
entrance slit Δλ
exit slit - detector

UV enhanced

lens and aperture
Imaging optics
solid angle
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pixel size - Δλ
intensity

g

Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 

The spectroscopic system is determined by the purpose !

time resolution detector Δλ

Imax

ns
ity

time resolution detector

spatial resolution detector, lines of sight

intensity detector, spec., optics In
te

ns
ity

Δλ

In
te

n

Time
LOS

1
spectral resolution detector, spec., optics

Wavelength]

1

4

y

survey spectrometer      pocket size      Δλ ≈ 1-2 nm

1m spectrometer      good optics      Δλ ≈ 20 pm

Echelle spectrometer    high resolution   Δλ ≈ 1-2 pm line profilep
line shift

line monitoring
very simple

Δt, poor Δλ

relative intensities
common technique

poor Δt, Δλ, Δx, flexible

absolute intensities
expensive technique

poor Δt, Δλ, Δx, flexible
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Δt, poor Δλ

less information

poor Δt, Δλ, Δx, flexible

moderate information

poor Δt, Δλ, Δx, flexible

powerful tool



Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 

Calibration of the spectroscopic system

Wavelength: pixel → nm
t l l l λ t bl

Radiance - Intensity
t W/ 2/ h/ 2/

Calibrated spectrum
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Ulbricht sphere

spectral lamps, plasma, λ tables counts → W/m2/sr, ph/m2/s

Calibrated spectrum
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exposure time
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Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 

From  intensity                         to plasma parameterpkpk ApnI )(=

Population modelsPopulation models

Boltzmann distribution (TE, LTE)

Collisional radiative model

high ne
relevance 
of photons

Corona equilibriumlow ne

p

Rate equations for excitation and de-excitation processesEnergy
αβS

...

. Ion

...

.

αβS
electron impact excitation and de-excitation

absorption and emission, heavy particle collisions, ....

n(p)

AX

0)()(
d

)(d
11 =−= ∑k pkepe ApnTXnn

t

pn
Corona model

rate coefficient
emission rate coefficient

01 nn ≅

n(k)

≈

X

∑==
k pkpkeppkepkepk AATXXwithTXnnI /)()( 10

emission rate coefficient
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n(1)

≈
CR model ,...),(0 ee

eff
pkepk nTXnnI =



Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 

Electron temperature from absolute line emission
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Find suitable gases and diagnostic lines
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Electron temperature [eV]

Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 

Electron temperature from line ratio (relative calibration)

)(1
1

1
epkepk TXnnI

= → ratio of rate coefficients
)(2

2
2

epkepk TXnnI
= → ratio of rate coefficients

for known densities

Find suitable gases and diagnostic lines

1000
 

nt
s

Find suitable gases and diagnostic lines

n1, n2 inert gases or n1 = n2

Ι undisturbed lines Ar750/He728
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fic
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nΙpk undisturbed lines

ground state excitation

X ti d d T 100
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e 
cXpk ratio depends on Te

1 2 3 4 5 6 7 8 9 10
10

R
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Electron temperature  [eV]



Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 
U Fantz et al Nucl Fusion 49 (2009) 125007

Actinometry: density ratio from line ratio (relative calibration)

)(1
1

1
epkepk TXnnI

= → ratio of densities

U. Fantz et al., Nucl. Fusion 49 (2009) 125007

)(2
2

2
epkepk TXnnI

=

density ratio (n /n )

→ ratio of densities
for known rate coefficients
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Electron temperature  [eV]

→needs iteration

Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 

Particle density from absolute line emission
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Knowledge of dominant excitation mechanism is essential !
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Example: Cs and Cs+ lines
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Example: emission spectroscopy at the ion source

Survey spectrometer and on-line monitoring
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Example: emission spectroscopy: ns→ H⎯ 
U Fantz D Wünderlich

A novel diagnostic technique for H¯ volume density
U. Fantz, D. Wünderlich

NJP 8 (2006) 301

Population mechanisms for H

H(n)

H+ H2
+recombination

dissociative
recombination
H2

+/H < 10-3Te > 1 eV

 Line ratios depend on ne, Te and H¯/H( )

H H2

H-

dissociative
excitation

effective
excitation

H/H2 > 0.1

100 5x1017
1017

Te = 3 eV

p e, e

H+ + H¯ → H(n=3) +  H

mutual neutralisation 100

ne [m-3]
5x1018
1018
5x1017

Hα/Hβ

ra
tio

Collisional radiative model

Hα 10 5x1018

1018

5x1017

1017

e [ ]

H /H

Li
ne

 

10-5 10-4 10-3 10-2 10-1 1
1

Hβ/Hγ

D it ti H-/H

Measurement of Balmer line ratios

H /Hβ depends on H¯/H
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Density ratio H-/HHα/Hβ depends on H /H

Hβ/Hγ reflects ne and Te



Example: emission spectroscopy: ns→ H⎯ 
U Fantz D Wünderlich

A novel diagnostic technique for H¯ volume density
U. Fantz, D. Wünderlich

NJP 8 (2006) 301

Population mechanisms for H
143 /
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+recombination
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Collisional radiative model
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H2, 80kW, 0.65Pa

Measurement of Balmer line ratios

H /Hβ depends on H¯/H high H /Hβ ratio: H¯ = 1×1017 m-3
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Hα/Hβ depends on H /H

Hβ/Hγ reflects ne and Te

high Hα/Hβ ratio: H  1×10 m

stable Hβ/Hγ ratio, i.e. stable ne and Te

Emission spectroscopy: ns, Ts→ e, H, H2, H⎯ 

Powerful diagnostic tool 

identification of species

particle densities

?? simple equipment

particle densities 

particle temperatures

on-line monitoring??
insight in plasma processes

spatial resolution by 
several lines of sight

in-situ, non-invasive

several lines of sight

,

line of sight averaged results
Analysis

based on atomic
and molecular physics

simple quite complex

t d b
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supported by
collisional radiative models



Summary

The three W’s

Plasma Diagnostics of Ion Sources

e t ee s

What do I want to  know ?  → and why?

What is the adequate technique ? → effort versus gain!

Wh t i th ibilit f th ? f ibilit !What is the accessibility of the source ? → feasibility !

The three examples

L i b φ T (EEDF)Langmuir probes → φpl, ne, Te, (EEDF) 

Absorption techniques → nspecies → Cs, H⎯ 

Emission spectroscopy→ ns, Ts→ e, H, H2, H⎯ p py s s 2

The three “keep-in-mind’s”

Monitoring versus quantification → trends or full informationg q

Spatial resolution → averaged or x-resolved (step width!))

Temporal resolution → averaged or t-resolved (time scale!)
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Diagnostics – The Window to the Knowledge !
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